Skip to main content

In Vitro Cancer Diagnostics

  • Chapter
  • First Online:
  • 1017 Accesses

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

Abstract

Cancer is a highly complex system and the second most common cause of death in the United States. Substantial efforts and investment have been made to understand the mechanism, develop diagnostic tools with better biomarkers, and improve therapeutics. To overcome the challenges associated with improving cancer outcomes, understanding the essential concepts behind diagnostic tests and their common modalities, as well as promising nanotechnology-based techniques used in the field, is greatly necessary. Thus, the basic concepts of a diagnostic test such as medical sensitivity and specificity are discussed in this chapter. The associated concepts of positive or negative predictive value and receiver operating characteristic curve are also explained with regard to their utility in evaluating diagnostic tests. In addition, the principles of genomic, proteomic, and cellular techniques used in cancer research are briefly reviewed, and nanotechnology-based diagnostic modalities in each corresponding category are introduced to highlight the impact of nanotechnology in the field of cancer diagnostics. Nanotechnology has demonstrated tremendous utility to cancer biomarker detection over the past decades and will indubitably be the key to future developments in cancer diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., Canaider, S.: An estimation of the number of cells in the human body. Ann. Hum. Biol. 40(6), 463–471 (2013). https://doi.org/10.3109/03014460.2013.807878

    Article  Google Scholar 

  2. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011). https://doi.org/10.1016/j.cell.2011.02.013

    Article  Google Scholar 

  3. Dalton, W.S., Friend, S.H.: Cancer biomarkers–an invitation to the table. Science. 312(5777), 1165–1168 (2006). https://doi.org/10.1126/science.1125948

    Article  Google Scholar 

  4. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65(1), 5–29 (2015). https://doi.org/10.3322/caac.21254

    Article  Google Scholar 

  5. Whitesides, G.M.: The ‘right’ size in nanobiotechnology. Nat. Biotechnol. 21(10), 1161–1165 (2003). https://doi.org/10.1038/nbt872

    Article  Google Scholar 

  6. Rusling, J.F., Kumar, C.V., Gutkind, J.S., Patel, V.: Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 135(10), 2496–2511 (2010). https://doi.org/10.1039/c0an00204f

    Article  Google Scholar 

  7. Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010). https://doi.org/10.1038/nnano.2009.353

    Article  Google Scholar 

  8. Phillips, M., Beatty, J.D., Cataneo, R.N., Huston, J., Kaplan, P.D., Lalisang, R.I., Lambin, P., Lobbes, M.B., Mundada, M., Pappas, N., Patel, U.: Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS One. 9(3), e90226 (2014). https://doi.org/10.1371/journal.pone.0090226

    Article  Google Scholar 

  9. Hori, S.S., Gambhir, S.S.: Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3(109), 109ra116 (2011). https://doi.org/10.1126/scitranslmed.3003110

    Article  Google Scholar 

  10. Brunetto, M.R.: A new role for an old marker, HBsAg. J. Hepatol. 52(4), 475–477 (2010). https://doi.org/10.1016/j.jhep.2009.12.020

    Article  Google Scholar 

  11. Fuzery, A.K., Levin, J., Chan, M.M., Chan, D.W.: Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteomics. 10(1), 13 (2013). https://doi.org/10.1186/1559-0275-10-13

    Article  Google Scholar 

  12. Kulasingam, V., Diamandis, E.P.: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5(10), 588–599 (2008). https://doi.org/10.1038/ncponc1187

    Article  Google Scholar 

  13. Ueland, F.R., Desimone, C.P., Seamon, L.G., Miller, R.A., Goodrich, S., Podzielinski, I., Sokoll, L., Smith, A., van Nagell Jr., J.R., Zhang, Z.: Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet. Gynecol. 117(6), 1289–1297 (2011). https://doi.org/10.1097/AOG.0b013e31821b5118

    Article  Google Scholar 

  14. Ludwig, J.A., Weinstein, J.N.: Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer. 5(11), 845–856 (2005). https://doi.org/10.1038/nrc1739

    Article  Google Scholar 

  15. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., Tewari, M.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105(30), 10513–10518 (2008). https://doi.org/10.1073/pnas.0804549105

    Article  Google Scholar 

  16. Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., Colin, G.A., Liu, C.G., Croce, C.M., Harris, C.C.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9(3), 189–198 (2006). https://doi.org/10.1016/j.ccr.2006.01.025

    Article  Google Scholar 

  17. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebet, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA expression profiles classify human cancers. Nature. 435(7043), 834–838 (2005). https://doi.org/10.1038/nature03702

    Article  Google Scholar 

  18. Diamandis, E.P.: Cancer biomarkers: can we turn recent failures into success? J. Natl. Cancer Inst. 102(19), 1462–1467 (2010). https://doi.org/10.1093/jnci/djq306

    Article  Google Scholar 

  19. Watson, J.D., Crick, F.H.: Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171(4356), 737–738 (1953)

    Article  Google Scholar 

  20. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J., Szustakowki, J., International Human Genome Sequencing C: Initial sequencing and analysis of the human genome. Nature. 409(6822), 860–921 (2001). https://doi.org/10.1038/35057062

  21. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.Q.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J.H., Miklos, G.L.G., Nelson, C., Broder, S., Clark, A.G., Nadeau, C., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z.M., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W.M., Gong, F.C., Gu, Z.P., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z.X., Ketchum, K.A., Lai, Z.W., Lei, Y.D., Li, Z.Y., Li, J.Y., Liang, Y., Lin, X.Y., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B.X., Sun, J.T., Wang, Z.Y., Wang, A.H., Wang, X., Wang, J., Wei, M.H., Wides, R., Xiao, C.L., Yan, C.H., Yao, A., Ye, J., Zhan, M., Zhang, W.Q., Zhang, H.Y., Zhao, Q., Zheng, L.S., Zhong, F., Zhong, W.Y., Zhu, S.P.C., Zhao, S.Y., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H.J., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H.Y., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A.D., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X.J., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M.Y., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X.H.: The sequence of the human genome. Science. 291(5507), 1304 (2001). https://doi.org/10.1126/science.1058040

    Article  Google Scholar 

  22. Genomes Project, C., Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., McVean, G.A.: An integrated map of genetic variation from 1,092 human genomes. Nature. 491(7422), 56–65 (2012). https://doi.org/10.1038/nature11632

    Article  Google Scholar 

  23. Boeke, J.D., Church, G., Hessel, A., Kelley, N.J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V.W., Holt, L., Isaacs, F.J., Kuiken, T., Lajoie, M., Lessor, T., Lunshof, J., Maurano, M.T., Mitchell, L.A., Rine, J., Rosser, S., Sanjana, N.E., Silver, P.A., Valle, D., Wang, H., Way, J.C., Yang, L.: GENOME ENGINEERING. The Genome Project-Write. Science. 353(6295), 126–127 (2016). https://doi.org/10.1126/science.aaf6850

    Article  Google Scholar 

  24. Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94(3), 441–448 (1975)

    Article  Google Scholar 

  25. Gardner, R.C., Howarth, A.J., Hahn, P., Brown-Luedi, M., Shepherd, R.J., Messing, J.: The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res. 9(12), 2871–2888 (1981)

    Article  Google Scholar 

  26. Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004). https://doi.org/10.1038/nm1087

    Article  Google Scholar 

  27. Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.D., Willis, J., Dawson, D., Willson, J.K., Gazdar, A.F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B.H., Bachman, K.E., Papadopoulos, N., Vogelstein, B., Kinzler, K.W., Velculescu, V.E.: The consensus coding sequences of human breast and colorectal cancers. Science. 314(5797), 268–274 (2006). https://doi.org/10.1126/science.1133427

    Article  Google Scholar 

  28. Lohr, J.G., Adalsteinsson, V.A., Cibulskis, K., Choudhury, A.D., Rosenberg, M., Cruz-Gordillo, P., Francis, J.M., Zhang, C.Z., Shalek, A.K., Satija, R., Trombetta, J.J., Lu, D., Tallapragada, N., Tahirova, N., Kim, S., Blumenstiel, B., Sougnez, C., Lowe, A., Wong, B., Auclair, D., Van Allen-, E.M., Nakabayashi, M., Lis, R.T., Lee, G.S.M., Li, T., Chabot, M.S., Taplin, M.E., Taplin, M.E., Clancy, T.E., Loda, M., Regev, A., Meyerson, M., Hahn, W.C., Kantoff, P.W., Golub, T.R., Getz, G., Boehm, J.S., Love, J.C.: Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32(5), 479–U202 (2014). https://doi.org/10.1038/nbt.2892

    Article  Google Scholar 

  29. Miyamoto, D.T., Zheng, Y., Wittner, B.S., Lee, R.J., Zhu, H., Broderick, K.T., Desai, R., Fox, D.B., Brannigan, B.W., Trautwein, J., Arora, K.S., Desai, N., Dahl, D.M., Sequist, L.V., Smith, M.R., Kapur, R., Wu, C.L., Shioda, T., Ramaswamy, S., Ting, D.T., Toner, M., Maheswaran, S., Haber, D.A.: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 349(6254), 1351–1356 (2015). https://doi.org/10.1126/science.aab0917

    Article  Google Scholar 

  30. Esteller, M.: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8(4), 286–298 (2007). https://doi.org/10.1038/nrg2005

    Article  Google Scholar 

  31. Shlien, A., Malkin, D.: Copy number variations and cancer. Genome Med. 1(6), 62 (2009). https://doi.org/10.1186/gm62

    Article  Google Scholar 

  32. Xu, R.H., Wei, W., Krawczyk, M., Wang, W.Q., Luo, H.Y., Flagg, K., Yi, S.H., Shi, W., Quan, Q.L., Li, K., Zheng, L.H., Zhang, H., Caughey, B.A., Zhao, Q., Hou, J.Y., Zhang, R.Z., Xu, Y.X., Cai, H.M., Li, G., Hou, R., Zhong, Z., Lin, D.N., Fu, X., Zhu, J., Duan, Y.O., Yu, M.X., Ying, B.W., Zhang, W.G., Wang, J., Zhang, E., Zhang, C., Li, O.L., Guo, R.P., Carter, H., Zhu, J.K., Hao, X.K., Zhang, K.: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16(11), 1155 (2017). https://doi.org/10.1038/Nmat4997

    Article  Google Scholar 

  33. Murphy, P.J., Cipriany, B.R., Wallin, C.B., Ju, C.Y., Szeto, K., Hagarman, J.A., Benitez, J.J., Craighead, H.G., Soloway, P.D.: Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl. Acad. Sci. U. S. A. 110(19), 7772–7777 (2013). https://doi.org/10.1073/pnas.1218495110

    Article  Google Scholar 

  34. Cipriany, B.R., Murphy, P.J., Hagarman, J.A., Cerf, A., Latulippe, D., Levy, S.L., Benitez, J.J., Tan, C.P., Topolancik, J., Soloway, P.D., Craighead, H.G.: Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc. Natl. Acad. Sci. U. S. A. 109(22), 8477–8482 (2012). https://doi.org/10.1073/pnas.1117549109

    Article  Google Scholar 

  35. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J., Zhang, C.Y.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18(10), 997–1006 (2008). https://doi.org/10.1038/cr.2008.282

    Article  Google Scholar 

  36. Castera, L., Krieger, S., Rousselin, A., Legros, A., Baumann, J.J., Bruet, O., Brault, B., Fouillet, R., Goardon, N., Letac, O., Baert-Desurmont, S., Tinat, J., Bera, O., Dugast, C., Berthet, P., Polycarpe, F., Layet, V., Hardouin, A., Frebourg, T., Vaur, D.: Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur. J. Hum. Genet. 22(11), 1305–1313 (2014). https://doi.org/10.1038/ejhg.2014.16

    Article  Google Scholar 

  37. Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135–1145 (2008). https://doi.org/10.1038/nbt1486

    Article  Google Scholar 

  38. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., Turner, S.: Real-time DNA sequencing from single polymerase molecules. Science. 323(5910), 133–138 (2009). https://doi.org/10.1126/science.1162986

    Article  Google Scholar 

  39. Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 299(5607), 682–686 (2003). https://doi.org/10.1126/science.1079700

    Article  Google Scholar 

  40. Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008). https://doi.org/10.1038/nbt.1495

    Article  Google Scholar 

  41. Jain, M., Fiddes, I.T., Miga, K.H., Olsen, H.E., Paten, B., Akeson, M.: Improved data analysis for the MinION nanopore sequencer. Nat. Methods. 12(4), 351–356 (2015). https://doi.org/10.1038/nmeth.3290

    Article  Google Scholar 

  42. Wulfkuhle, J.D., Liotta, L.A., Petricoin, E.F.: Proteomic applications for the early detection of cancer. Nat. Rev. Cancer. 3(4), 267–275 (2003). https://doi.org/10.1038/nrc1043

    Article  Google Scholar 

  43. Yalow, R.S., Berson, S.A.: Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39, 1157–1175 (1960). https://doi.org/10.1172/JCI104130

    Article  Google Scholar 

  44. Engvall, E., Perlmann, P.: Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 8(9), 871–874 (1971)

    Article  Google Scholar 

  45. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270(5235), 467–470 (1995)

    Article  Google Scholar 

  46. Wang, X.J., Yu, J.J., Sreekumar, A., Varambally, S., Shen, R.L., Giacherio, D., Mehra, R., Montie, J.E., Pienta, K.J., Sanda, M.G., Kantoff, P.W., Rubin, M.A., Wei, J.T., Ghosh, D., Chinnaiyan, A.M.: Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353(12), 1224–1235 (2005). https://doi.org/10.1056/Nejmoa051931

    Article  Google Scholar 

  47. Backmann, N., Zahnd, C., Huber, F., Bietsch, A., Pluckthun, A., Lang, H.P., Guntherodt, H.J., Hegner, M., Gerber, C.: A label-free immunosensor array using single-chain antibody fragments. Proc. Natl. Acad. Sci. U. S. A. 102(41), 14587–14592 (2005). https://doi.org/10.1073/pnas.0504917102

    Article  Google Scholar 

  48. Cooper, M.A.: Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1(7), 515–528 (2002). https://doi.org/10.1038/nrd838

    Article  Google Scholar 

  49. Sheehan, K.M., Calvert, V.S., Kay, E.W., Lu, Y.L., Fishman, D., Espina, V., Aquino, J., Speer, R., Araujo, R., Mills, G.B., Liotta, L.A., Petricoin, E.F., Wulfkuhle, J.D.: Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics. 4(4), 346–355 (2005). https://doi.org/10.1074/mcp.T500003-MCP200

    Article  Google Scholar 

  50. Fan, R., Vermesh, O., Srivastava, A., Yen, B.K., Qin, L., Ahmad, H., Kwong, G.A., Liu, C.C., Gould, J., Hood, L., Heath, J.R.: Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008). https://doi.org/10.1038/nbt.1507

    Article  Google Scholar 

  51. Gaster, R.S., Hall, D.A., Nielsen, C.H., Osterfeld, S.J., Yu, H., Mach, K.E., Wilson, R.J., Murmann, B., Liao, J.C., Gambhir, S.S., Wang, S.X.: Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15(11), 1327–1332 (2009). https://doi.org/10.1038/nm.2032

    Article  Google Scholar 

  52. Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005). https://doi.org/10.1038/nbt1138

    Article  Google Scholar 

  53. Chinen, A.B., Guan, C.M., Ferrer, J.R., Barnaby, S.N., Merkel, T.J., Mirkin, C.A.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115(19), 10530–10574 (2015). https://doi.org/10.1021/acs.chemrev.5b00321

    Article  Google Scholar 

  54. Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301(5641), 1884–1886 (2003). https://doi.org/10.1126/science.1088755

    Article  Google Scholar 

  55. Zheng, T.Y., Pierre-Pierre, N., Yan, X., Huo, Q., Almodovar, A.J.O., Valerio, F., Rivera-Ramirez, I., Griffith, E., Decker, D.D., Chen, S.X., Zhu, N.: Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl. Mater Inter. 7(12), 6819–6827 (2015). https://doi.org/10.1021/acsami.5b00371

    Article  Google Scholar 

  56. Caputo, D., Papi, M., Coppola, R., Palchetti, S., Digiacomo, L., Caracciolo, G., Pozzi, D.: A protein corona-enabled blood test for early cancer detection. Nanoscale. 9(1), 349–354 (2017). https://doi.org/10.1039/c6nr05609a

    Article  Google Scholar 

  57. Li, H., Cao, Z., Zhang, Y., Lau, C., Lu, J.: Simultaneous detection of two lung cancer biomarkers using dual-color fluorescence quantum dots. Analyst. 136(7), 1399–1405 (2011). https://doi.org/10.1039/c0an00704h

    Article  Google Scholar 

  58. Lee, J.R., Sato, N., Bechstein, D.J., Osterfeld, S.J., Wang, J., Gani, A.W., Hall, D.A., Wang, S.X.: Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors. Sci. Rep. 6, 18692 (2016). https://doi.org/10.1038/srep18692

    Article  Google Scholar 

  59. Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Matera, J., Miller, M.C., Reuben, J.M., Doyle, G.V., Allard, W.J., Terstappen, L.W., Hayes, D.F.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351(8), 781–791 (2004). https://doi.org/10.1056/NEJMoa040766

    Article  Google Scholar 

  60. Powles, T., Eder, J.P., Fine, G.D., Braiteh, F.S., Loriot, Y., Cruz, C., Bellmunt, J., Burris, H.A., Petrylak, D.P., Teng, S.L., Shen, X., Boyd, Z., Hegde, P.S., Chen, D.S., Vogelzang, N.J.: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 515(7528), 558–562 (2014). https://doi.org/10.1038/nature13904

    Article  Google Scholar 

  61. Earhart, C.M., Hughes, C.E., Gaster, R.S., Ooi, C.C., Wilson, R.J., Zhou, L.Y., Humke, E.W., Xu, L., Wong, D.J., Willingham, S.B., Schwartz, E.J., Weissman, I.L., Jeffrey, S.S., Neal, J.W., Rohatgi, R., Wakelee, H.A., Wang, S.X.: Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip. 14(1), 78–88 (2014). https://doi.org/10.1039/c3lc50580d

    Article  Google Scholar 

  62. Park, S.M., Wong, D.J., Ooi, C.C., Kurtz, D.M., Vermesh, O., Aalipour, A., Suh, S., Pian, K.L., Chabon, J.J., Lee, S.H., Jamali, M., Say, C., Carter, J.N., Lee, L.P., Kuschner, W.G., Schwartz, E.J., Shrager, J.B., Neal, J.W., Wakelee, H.A., Diehn, M., Nair, V.S., Wang, S.X., Gambhir, S.S.: Molecular profiling of single circulating tumor cells from lung cancer patients. Proc. Natl. Acad. Sci. U. S. A. 113(52), E8379–E8386 (2016). https://doi.org/10.1073/pnas.1608461113

  63. Issadore, D., Chung, J., Shao, H.L., Liong, M., Ghazani, A.A., Castro, C.M., Weissleder, R., Lee, H.: Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci. Transl. Med. 4(141), 141ra92 (2012). https://doi.org/10.1126/scitranslmed.3003747

  64. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41–46 (2003). https://doi.org/10.1038/nbt764

    Article  Google Scholar 

  65. Wang, M., Mi, C.C., Wang, W.X., Liu, C.H., Wu, Y.F., Xu, Z.R., Mao, C.B., Xu, S.K.: Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er Upconversion nanoparticles. ACS Nano. 3(6), 1580–1586 (2009). https://doi.org/10.1021/nn900491j

    Article  Google Scholar 

  66. Rosenholm, J.M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J.E., Sahlgren, C., Linden, M.: Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 3(1), 197–206 (2009). https://doi.org/10.1021/nn800781r

    Article  Google Scholar 

  67. Byun, S., Son, S., Amodei, D., Cermak, N., Shaw, J., Kang, J.H., Hecht, V.C., Winslow, M.M., Jacks, T., Mallick, P., Manalis, S.R.: Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 110(19), 7580–7585 (2013). https://doi.org/10.1073/pnas.1218806110

    Article  Google Scholar 

  68. Lu, Y., Chen, J.J., Mu, L., Xue, Q., Wu, Y., Wu, P.H., Li, J., Vortmeyer, A.O., Miller-Jensen, K., Wirtz, D., Fan, R.: High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85(4), 2548–2556 (2013). https://doi.org/10.1021/ac400082e

    Article  Google Scholar 

  69. Shi, Q., Qin, L., Wei, W., Geng, F., Fan, R., Shin, Y.S., Guo, D., Hood, L., Mischel, P.S., Heath, J.R.: Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. U. S. A. 109(2), 419–424 (2012). https://doi.org/10.1073/pnas.1110865109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan X. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, JR., Ooi, C.C., Wang, S.X. (2019). In Vitro Cancer Diagnostics. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics