Advertisement

In Vitro Cancer Diagnostics

  • Jung-Rok Lee
  • Chin Chun Ooi
  • Shan X. WangEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Cancer is a highly complex system and the second most common cause of death in the United States. Substantial efforts and investment have been made to understand the mechanism, develop diagnostic tools with better biomarkers, and improve therapeutics. To overcome the challenges associated with improving cancer outcomes, understanding the essential concepts behind diagnostic tests and their common modalities, as well as promising nanotechnology-based techniques used in the field, is greatly necessary. Thus, the basic concepts of a diagnostic test such as medical sensitivity and specificity are discussed in this chapter. The associated concepts of positive or negative predictive value and receiver operating characteristic curve are also explained with regard to their utility in evaluating diagnostic tests. In addition, the principles of genomic, proteomic, and cellular techniques used in cancer research are briefly reviewed, and nanotechnology-based diagnostic modalities in each corresponding category are introduced to highlight the impact of nanotechnology in the field of cancer diagnostics. Nanotechnology has demonstrated tremendous utility to cancer biomarker detection over the past decades and will indubitably be the key to future developments in cancer diagnosis.

Keywords

Cancer In vitro Diagnostics Nanotechnology Biomarker Sensitivity Specificity Threshold Positive predictive value Negative predictive value Receiver operating characteristic Area under curve Youden’s index Multivariate index Molecular modality DNA sequencing Cancer genomics Next-generation sequencing Cancer proteomics Immunoassay Biosensors Nanoparticles Cellular modality Single-cell analysis Circulating tumor cell 

References

  1. 1.
    Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R., Frabetti, F., Vitale, L., Pelleri, M.C., Tassani, S., Piva, F., Perez-Amodio, S., Strippoli, P., Canaider, S.: An estimation of the number of cells in the human body. Ann. Hum. Biol. 40(6), 463–471 (2013).  https://doi.org/10.3109/03014460.2013.807878CrossRefGoogle Scholar
  2. 2.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011).  https://doi.org/10.1016/j.cell.2011.02.013CrossRefGoogle Scholar
  3. 3.
    Dalton, W.S., Friend, S.H.: Cancer biomarkers–an invitation to the table. Science. 312(5777), 1165–1168 (2006).  https://doi.org/10.1126/science.1125948CrossRefGoogle Scholar
  4. 4.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65(1), 5–29 (2015).  https://doi.org/10.3322/caac.21254CrossRefGoogle Scholar
  5. 5.
    Whitesides, G.M.: The ‘right’ size in nanobiotechnology. Nat. Biotechnol. 21(10), 1161–1165 (2003).  https://doi.org/10.1038/nbt872CrossRefGoogle Scholar
  6. 6.
    Rusling, J.F., Kumar, C.V., Gutkind, J.S., Patel, V.: Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 135(10), 2496–2511 (2010).  https://doi.org/10.1039/c0an00204fCrossRefGoogle Scholar
  7. 7.
    Stern, E., Vacic, A., Rajan, N.K., Criscione, J.M., Park, J., Ilic, B.R., Mooney, D.J., Reed, M.A., Fahmy, T.M.: Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5(2), 138–142 (2010).  https://doi.org/10.1038/nnano.2009.353CrossRefGoogle Scholar
  8. 8.
    Phillips, M., Beatty, J.D., Cataneo, R.N., Huston, J., Kaplan, P.D., Lalisang, R.I., Lambin, P., Lobbes, M.B., Mundada, M., Pappas, N., Patel, U.: Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS One. 9(3), e90226 (2014).  https://doi.org/10.1371/journal.pone.0090226CrossRefGoogle Scholar
  9. 9.
    Hori, S.S., Gambhir, S.S.: Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3(109), 109ra116 (2011).  https://doi.org/10.1126/scitranslmed.3003110CrossRefGoogle Scholar
  10. 10.
    Brunetto, M.R.: A new role for an old marker, HBsAg. J. Hepatol. 52(4), 475–477 (2010).  https://doi.org/10.1016/j.jhep.2009.12.020CrossRefGoogle Scholar
  11. 11.
    Fuzery, A.K., Levin, J., Chan, M.M., Chan, D.W.: Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteomics. 10(1), 13 (2013).  https://doi.org/10.1186/1559-0275-10-13CrossRefGoogle Scholar
  12. 12.
    Kulasingam, V., Diamandis, E.P.: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol. 5(10), 588–599 (2008).  https://doi.org/10.1038/ncponc1187CrossRefGoogle Scholar
  13. 13.
    Ueland, F.R., Desimone, C.P., Seamon, L.G., Miller, R.A., Goodrich, S., Podzielinski, I., Sokoll, L., Smith, A., van Nagell Jr., J.R., Zhang, Z.: Effectiveness of a multivariate index assay in the preoperative assessment of ovarian tumors. Obstet. Gynecol. 117(6), 1289–1297 (2011).  https://doi.org/10.1097/AOG.0b013e31821b5118CrossRefGoogle Scholar
  14. 14.
    Ludwig, J.A., Weinstein, J.N.: Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer. 5(11), 845–856 (2005).  https://doi.org/10.1038/nrc1739CrossRefGoogle Scholar
  15. 15.
    Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O'Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B., Tewari, M.: Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105(30), 10513–10518 (2008).  https://doi.org/10.1073/pnas.0804549105CrossRefGoogle Scholar
  16. 16.
    Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R.M., Okamoto, A., Yokota, J., Tanaka, T., Colin, G.A., Liu, C.G., Croce, C.M., Harris, C.C.: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9(3), 189–198 (2006).  https://doi.org/10.1016/j.ccr.2006.01.025CrossRefGoogle Scholar
  17. 17.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebet, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA expression profiles classify human cancers. Nature. 435(7043), 834–838 (2005).  https://doi.org/10.1038/nature03702CrossRefGoogle Scholar
  18. 18.
    Diamandis, E.P.: Cancer biomarkers: can we turn recent failures into success? J. Natl. Cancer Inst. 102(19), 1462–1467 (2010).  https://doi.org/10.1093/jnci/djq306CrossRefGoogle Scholar
  19. 19.
    Watson, J.D., Crick, F.H.: Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  20. 20.
    Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, Y., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M., Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowki, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J., Szustakowki, J., International Human Genome Sequencing C: Initial sequencing and analysis of the human genome. Nature. 409(6822), 860–921 (2001).  https://doi.org/10.1038/35057062
  21. 21.
    Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., Gocayne, J.D., Amanatides, P., Ballew, R.M., Huson, D.H., Wortman, J.R., Zhang, Q., Kodira, C.D., Zheng, X.Q.H., Chen, L., Skupski, M., Subramanian, G., Thomas, P.D., Zhang, J.H., Miklos, G.L.G., Nelson, C., Broder, S., Clark, A.G., Nadeau, C., McKusick, V.A., Zinder, N., Levine, A.J., Roberts, R.J., Simon, M., Slayman, C., Hunkapiller, M., Bolanos, R., Delcher, A., Dew, I., Fasulo, D., Flanigan, M., Florea, L., Halpern, A., Hannenhalli, S., Kravitz, S., Levy, S., Mobarry, C., Reinert, K., Remington, K., Abu-Threideh, J., Beasley, E., Biddick, K., Bonazzi, V., Brandon, R., Cargill, M., Chandramouliswaran, I., Charlab, R., Chaturvedi, K., Deng, Z.M., Di Francesco, V., Dunn, P., Eilbeck, K., Evangelista, C., Gabrielian, A.E., Gan, W., Ge, W.M., Gong, F.C., Gu, Z.P., Guan, P., Heiman, T.J., Higgins, M.E., Ji, R.R., Ke, Z.X., Ketchum, K.A., Lai, Z.W., Lei, Y.D., Li, Z.Y., Li, J.Y., Liang, Y., Lin, X.Y., Lu, F., Merkulov, G.V., Milshina, N., Moore, H.M., Naik, A.K., Narayan, V.A., Neelam, B., Nusskern, D., Rusch, D.B., Salzberg, S., Shao, W., Shue, B.X., Sun, J.T., Wang, Z.Y., Wang, A.H., Wang, X., Wang, J., Wei, M.H., Wides, R., Xiao, C.L., Yan, C.H., Yao, A., Ye, J., Zhan, M., Zhang, W.Q., Zhang, H.Y., Zhao, Q., Zheng, L.S., Zhong, F., Zhong, W.Y., Zhu, S.P.C., Zhao, S.Y., Gilbert, D., Baumhueter, S., Spier, G., Carter, C., Cravchik, A., Woodage, T., Ali, F., An, H.J., Awe, A., Baldwin, D., Baden, H., Barnstead, M., Barrow, I., Beeson, K., Busam, D., Carver, A., Center, A., Cheng, M.L., Curry, L., Danaher, S., Davenport, L., Desilets, R., Dietz, S., Dodson, K., Doup, L., Ferriera, S., Garg, N., Gluecksmann, A., Hart, B., Haynes, J., Haynes, C., Heiner, C., Hladun, S., Hostin, D., Houck, J., Howland, T., Ibegwam, C., Johnson, J., Kalush, F., Kline, L., Koduru, S., Love, A., Mann, F., May, D., McCawley, S., McIntosh, T., McMullen, I., Moy, M., Moy, L., Murphy, B., Nelson, K., Pfannkoch, C., Pratts, E., Puri, V., Qureshi, H., Reardon, M., Rodriguez, R., Rogers, Y.H., Romblad, D., Ruhfel, B., Scott, R., Sitter, C., Smallwood, M., Stewart, E., Strong, R., Suh, E., Thomas, R., Tint, N.N., Tse, S., Vech, C., Wang, G., Wetter, J., Williams, S., Williams, M., Windsor, S., Winn-Deen, E., Wolfe, K., Zaveri, J., Zaveri, K., Abril, J.F., Guigo, R., Campbell, M.J., Sjolander, K.V., Karlak, B., Kejariwal, A., Mi, H.Y., Lazareva, B., Hatton, T., Narechania, A., Diemer, K., Muruganujan, A., Guo, N., Sato, S., Bafna, V., Istrail, S., Lippert, R., Schwartz, R., Walenz, B., Yooseph, S., Allen, D., Basu, A., Baxendale, J., Blick, L., Caminha, M., Carnes-Stine, J., Caulk, P., Chiang, Y.H., Coyne, M., Dahlke, C., Mays, A.D., Dombroski, M., Donnelly, M., Ely, D., Esparham, S., Fosler, C., Gire, H., Glanowski, S., Glasser, K., Glodek, A., Gorokhov, M., Graham, K., Gropman, B., Harris, M., Heil, J., Henderson, S., Hoover, J., Jennings, D., Jordan, C., Jordan, J., Kasha, J., Kagan, L., Kraft, C., Levitsky, A., Lewis, M., Liu, X.J., Lopez, J., Ma, D., Majoros, W., McDaniel, J., Murphy, S., Newman, M., Nguyen, T., Nguyen, N., Nodell, M., Pan, S., Peck, J., Peterson, M., Rowe, W., Sanders, R., Scott, J., Simpson, M., Smith, T., Sprague, A., Stockwell, T., Turner, R., Venter, E., Wang, M., Wen, M.Y., Wu, D., Wu, M., Xia, A., Zandieh, A., Zhu, X.H.: The sequence of the human genome. Science. 291(5507), 1304 (2001).  https://doi.org/10.1126/science.1058040CrossRefGoogle Scholar
  22. 22.
    Genomes Project, C., Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., McVean, G.A.: An integrated map of genetic variation from 1,092 human genomes. Nature. 491(7422), 56–65 (2012).  https://doi.org/10.1038/nature11632CrossRefGoogle Scholar
  23. 23.
    Boeke, J.D., Church, G., Hessel, A., Kelley, N.J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V.W., Holt, L., Isaacs, F.J., Kuiken, T., Lajoie, M., Lessor, T., Lunshof, J., Maurano, M.T., Mitchell, L.A., Rine, J., Rosser, S., Sanjana, N.E., Silver, P.A., Valle, D., Wang, H., Way, J.C., Yang, L.: GENOME ENGINEERING. The Genome Project-Write. Science. 353(6295), 126–127 (2016).  https://doi.org/10.1126/science.aaf6850CrossRefGoogle Scholar
  24. 24.
    Sanger, F., Coulson, A.R.: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94(3), 441–448 (1975)CrossRefGoogle Scholar
  25. 25.
    Gardner, R.C., Howarth, A.J., Hahn, P., Brown-Luedi, M., Shepherd, R.J., Messing, J.: The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Res. 9(12), 2871–2888 (1981)CrossRefGoogle Scholar
  26. 26.
    Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10(8), 789–799 (2004).  https://doi.org/10.1038/nm1087CrossRefGoogle Scholar
  27. 27.
    Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.D., Willis, J., Dawson, D., Willson, J.K., Gazdar, A.F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B.H., Bachman, K.E., Papadopoulos, N., Vogelstein, B., Kinzler, K.W., Velculescu, V.E.: The consensus coding sequences of human breast and colorectal cancers. Science. 314(5797), 268–274 (2006).  https://doi.org/10.1126/science.1133427CrossRefGoogle Scholar
  28. 28.
    Lohr, J.G., Adalsteinsson, V.A., Cibulskis, K., Choudhury, A.D., Rosenberg, M., Cruz-Gordillo, P., Francis, J.M., Zhang, C.Z., Shalek, A.K., Satija, R., Trombetta, J.J., Lu, D., Tallapragada, N., Tahirova, N., Kim, S., Blumenstiel, B., Sougnez, C., Lowe, A., Wong, B., Auclair, D., Van Allen-, E.M., Nakabayashi, M., Lis, R.T., Lee, G.S.M., Li, T., Chabot, M.S., Taplin, M.E., Taplin, M.E., Clancy, T.E., Loda, M., Regev, A., Meyerson, M., Hahn, W.C., Kantoff, P.W., Golub, T.R., Getz, G., Boehm, J.S., Love, J.C.: Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32(5), 479–U202 (2014).  https://doi.org/10.1038/nbt.2892CrossRefGoogle Scholar
  29. 29.
    Miyamoto, D.T., Zheng, Y., Wittner, B.S., Lee, R.J., Zhu, H., Broderick, K.T., Desai, R., Fox, D.B., Brannigan, B.W., Trautwein, J., Arora, K.S., Desai, N., Dahl, D.M., Sequist, L.V., Smith, M.R., Kapur, R., Wu, C.L., Shioda, T., Ramaswamy, S., Ting, D.T., Toner, M., Maheswaran, S., Haber, D.A.: RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 349(6254), 1351–1356 (2015).  https://doi.org/10.1126/science.aab0917CrossRefGoogle Scholar
  30. 30.
    Esteller, M.: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8(4), 286–298 (2007).  https://doi.org/10.1038/nrg2005CrossRefGoogle Scholar
  31. 31.
    Shlien, A., Malkin, D.: Copy number variations and cancer. Genome Med. 1(6), 62 (2009).  https://doi.org/10.1186/gm62CrossRefGoogle Scholar
  32. 32.
    Xu, R.H., Wei, W., Krawczyk, M., Wang, W.Q., Luo, H.Y., Flagg, K., Yi, S.H., Shi, W., Quan, Q.L., Li, K., Zheng, L.H., Zhang, H., Caughey, B.A., Zhao, Q., Hou, J.Y., Zhang, R.Z., Xu, Y.X., Cai, H.M., Li, G., Hou, R., Zhong, Z., Lin, D.N., Fu, X., Zhu, J., Duan, Y.O., Yu, M.X., Ying, B.W., Zhang, W.G., Wang, J., Zhang, E., Zhang, C., Li, O.L., Guo, R.P., Carter, H., Zhu, J.K., Hao, X.K., Zhang, K.: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16(11), 1155 (2017).  https://doi.org/10.1038/Nmat4997CrossRefGoogle Scholar
  33. 33.
    Murphy, P.J., Cipriany, B.R., Wallin, C.B., Ju, C.Y., Szeto, K., Hagarman, J.A., Benitez, J.J., Craighead, H.G., Soloway, P.D.: Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl. Acad. Sci. U. S. A. 110(19), 7772–7777 (2013).  https://doi.org/10.1073/pnas.1218495110CrossRefGoogle Scholar
  34. 34.
    Cipriany, B.R., Murphy, P.J., Hagarman, J.A., Cerf, A., Latulippe, D., Levy, S.L., Benitez, J.J., Tan, C.P., Topolancik, J., Soloway, P.D., Craighead, H.G.: Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc. Natl. Acad. Sci. U. S. A. 109(22), 8477–8482 (2012).  https://doi.org/10.1073/pnas.1117549109CrossRefGoogle Scholar
  35. 35.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J., Zhang, C.Y.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18(10), 997–1006 (2008).  https://doi.org/10.1038/cr.2008.282CrossRefGoogle Scholar
  36. 36.
    Castera, L., Krieger, S., Rousselin, A., Legros, A., Baumann, J.J., Bruet, O., Brault, B., Fouillet, R., Goardon, N., Letac, O., Baert-Desurmont, S., Tinat, J., Bera, O., Dugast, C., Berthet, P., Polycarpe, F., Layet, V., Hardouin, A., Frebourg, T., Vaur, D.: Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur. J. Hum. Genet. 22(11), 1305–1313 (2014).  https://doi.org/10.1038/ejhg.2014.16CrossRefGoogle Scholar
  37. 37.
    Shendure, J., Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135–1145 (2008).  https://doi.org/10.1038/nbt1486CrossRefGoogle Scholar
  38. 38.
    Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., Turner, S.: Real-time DNA sequencing from single polymerase molecules. Science. 323(5910), 133–138 (2009).  https://doi.org/10.1126/science.1162986CrossRefGoogle Scholar
  39. 39.
    Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W.: Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 299(5607), 682–686 (2003).  https://doi.org/10.1126/science.1079700CrossRefGoogle Scholar
  40. 40.
    Branton, D., Deamer, D.W., Marziali, A., Bayley, H., Benner, S.A., Butler, T., Di Ventra, M., Garaj, S., Hibbs, A., Huang, X., Jovanovich, S.B., Krstic, P.S., Lindsay, S., Ling, X.S., Mastrangelo, C.H., Meller, A., Oliver, J.S., Pershin, Y.V., Ramsey, J.M., Riehn, R., Soni, G.V., Tabard-Cossa, V., Wanunu, M., Wiggin, M., Schloss, J.A.: The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10), 1146–1153 (2008).  https://doi.org/10.1038/nbt.1495CrossRefGoogle Scholar
  41. 41.
    Jain, M., Fiddes, I.T., Miga, K.H., Olsen, H.E., Paten, B., Akeson, M.: Improved data analysis for the MinION nanopore sequencer. Nat. Methods. 12(4), 351–356 (2015).  https://doi.org/10.1038/nmeth.3290CrossRefGoogle Scholar
  42. 42.
    Wulfkuhle, J.D., Liotta, L.A., Petricoin, E.F.: Proteomic applications for the early detection of cancer. Nat. Rev. Cancer. 3(4), 267–275 (2003).  https://doi.org/10.1038/nrc1043CrossRefGoogle Scholar
  43. 43.
    Yalow, R.S., Berson, S.A.: Immunoassay of endogenous plasma insulin in man. J. Clin. Invest. 39, 1157–1175 (1960).  https://doi.org/10.1172/JCI104130CrossRefGoogle Scholar
  44. 44.
    Engvall, E., Perlmann, P.: Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 8(9), 871–874 (1971)CrossRefGoogle Scholar
  45. 45.
    Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270(5235), 467–470 (1995)CrossRefGoogle Scholar
  46. 46.
    Wang, X.J., Yu, J.J., Sreekumar, A., Varambally, S., Shen, R.L., Giacherio, D., Mehra, R., Montie, J.E., Pienta, K.J., Sanda, M.G., Kantoff, P.W., Rubin, M.A., Wei, J.T., Ghosh, D., Chinnaiyan, A.M.: Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353(12), 1224–1235 (2005).  https://doi.org/10.1056/Nejmoa051931CrossRefGoogle Scholar
  47. 47.
    Backmann, N., Zahnd, C., Huber, F., Bietsch, A., Pluckthun, A., Lang, H.P., Guntherodt, H.J., Hegner, M., Gerber, C.: A label-free immunosensor array using single-chain antibody fragments. Proc. Natl. Acad. Sci. U. S. A. 102(41), 14587–14592 (2005).  https://doi.org/10.1073/pnas.0504917102CrossRefGoogle Scholar
  48. 48.
    Cooper, M.A.: Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1(7), 515–528 (2002).  https://doi.org/10.1038/nrd838CrossRefGoogle Scholar
  49. 49.
    Sheehan, K.M., Calvert, V.S., Kay, E.W., Lu, Y.L., Fishman, D., Espina, V., Aquino, J., Speer, R., Araujo, R., Mills, G.B., Liotta, L.A., Petricoin, E.F., Wulfkuhle, J.D.: Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol. Cell. Proteomics. 4(4), 346–355 (2005).  https://doi.org/10.1074/mcp.T500003-MCP200CrossRefGoogle Scholar
  50. 50.
    Fan, R., Vermesh, O., Srivastava, A., Yen, B.K., Qin, L., Ahmad, H., Kwong, G.A., Liu, C.C., Gould, J., Hood, L., Heath, J.R.: Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008).  https://doi.org/10.1038/nbt.1507CrossRefGoogle Scholar
  51. 51.
    Gaster, R.S., Hall, D.A., Nielsen, C.H., Osterfeld, S.J., Yu, H., Mach, K.E., Wilson, R.J., Murmann, B., Liao, J.C., Gambhir, S.S., Wang, S.X.: Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15(11), 1327–1332 (2009).  https://doi.org/10.1038/nm.2032CrossRefGoogle Scholar
  52. 52.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W.U., Lieber, C.M.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005).  https://doi.org/10.1038/nbt1138CrossRefGoogle Scholar
  53. 53.
    Chinen, A.B., Guan, C.M., Ferrer, J.R., Barnaby, S.N., Merkel, T.J., Mirkin, C.A.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115(19), 10530–10574 (2015).  https://doi.org/10.1021/acs.chemrev.5b00321CrossRefGoogle Scholar
  54. 54.
    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301(5641), 1884–1886 (2003).  https://doi.org/10.1126/science.1088755CrossRefGoogle Scholar
  55. 55.
    Zheng, T.Y., Pierre-Pierre, N., Yan, X., Huo, Q., Almodovar, A.J.O., Valerio, F., Rivera-Ramirez, I., Griffith, E., Decker, D.D., Chen, S.X., Zhu, N.: Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl. Mater Inter. 7(12), 6819–6827 (2015).  https://doi.org/10.1021/acsami.5b00371CrossRefGoogle Scholar
  56. 56.
    Caputo, D., Papi, M., Coppola, R., Palchetti, S., Digiacomo, L., Caracciolo, G., Pozzi, D.: A protein corona-enabled blood test for early cancer detection. Nanoscale. 9(1), 349–354 (2017).  https://doi.org/10.1039/c6nr05609aCrossRefGoogle Scholar
  57. 57.
    Li, H., Cao, Z., Zhang, Y., Lau, C., Lu, J.: Simultaneous detection of two lung cancer biomarkers using dual-color fluorescence quantum dots. Analyst. 136(7), 1399–1405 (2011).  https://doi.org/10.1039/c0an00704hCrossRefGoogle Scholar
  58. 58.
    Lee, J.R., Sato, N., Bechstein, D.J., Osterfeld, S.J., Wang, J., Gani, A.W., Hall, D.A., Wang, S.X.: Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors. Sci. Rep. 6, 18692 (2016).  https://doi.org/10.1038/srep18692CrossRefGoogle Scholar
  59. 59.
    Cristofanilli, M., Budd, G.T., Ellis, M.J., Stopeck, A., Matera, J., Miller, M.C., Reuben, J.M., Doyle, G.V., Allard, W.J., Terstappen, L.W., Hayes, D.F.: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351(8), 781–791 (2004).  https://doi.org/10.1056/NEJMoa040766CrossRefGoogle Scholar
  60. 60.
    Powles, T., Eder, J.P., Fine, G.D., Braiteh, F.S., Loriot, Y., Cruz, C., Bellmunt, J., Burris, H.A., Petrylak, D.P., Teng, S.L., Shen, X., Boyd, Z., Hegde, P.S., Chen, D.S., Vogelzang, N.J.: MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 515(7528), 558–562 (2014).  https://doi.org/10.1038/nature13904CrossRefGoogle Scholar
  61. 61.
    Earhart, C.M., Hughes, C.E., Gaster, R.S., Ooi, C.C., Wilson, R.J., Zhou, L.Y., Humke, E.W., Xu, L., Wong, D.J., Willingham, S.B., Schwartz, E.J., Weissman, I.L., Jeffrey, S.S., Neal, J.W., Rohatgi, R., Wakelee, H.A., Wang, S.X.: Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip. 14(1), 78–88 (2014).  https://doi.org/10.1039/c3lc50580dCrossRefGoogle Scholar
  62. 62.
    Park, S.M., Wong, D.J., Ooi, C.C., Kurtz, D.M., Vermesh, O., Aalipour, A., Suh, S., Pian, K.L., Chabon, J.J., Lee, S.H., Jamali, M., Say, C., Carter, J.N., Lee, L.P., Kuschner, W.G., Schwartz, E.J., Shrager, J.B., Neal, J.W., Wakelee, H.A., Diehn, M., Nair, V.S., Wang, S.X., Gambhir, S.S.: Molecular profiling of single circulating tumor cells from lung cancer patients. Proc. Natl. Acad. Sci. U. S. A. 113(52), E8379–E8386 (2016).  https://doi.org/10.1073/pnas.1608461113CrossRefGoogle Scholar
  63. 63.
    Issadore, D., Chung, J., Shao, H.L., Liong, M., Ghazani, A.A., Castro, C.M., Weissleder, R., Lee, H.: Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci. Transl. Med. 4(141), 141ra92 (2012).  https://doi.org/10.1126/scitranslmed.3003747CrossRefGoogle Scholar
  64. 64.
    Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41–46 (2003).  https://doi.org/10.1038/nbt764CrossRefGoogle Scholar
  65. 65.
    Wang, M., Mi, C.C., Wang, W.X., Liu, C.H., Wu, Y.F., Xu, Z.R., Mao, C.B., Xu, S.K.: Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er Upconversion nanoparticles. ACS Nano. 3(6), 1580–1586 (2009).  https://doi.org/10.1021/nn900491jCrossRefGoogle Scholar
  66. 66.
    Rosenholm, J.M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J.E., Sahlgren, C., Linden, M.: Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano. 3(1), 197–206 (2009).  https://doi.org/10.1021/nn800781rCrossRefGoogle Scholar
  67. 67.
    Byun, S., Son, S., Amodei, D., Cermak, N., Shaw, J., Kang, J.H., Hecht, V.C., Winslow, M.M., Jacks, T., Mallick, P., Manalis, S.R.: Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. U. S. A. 110(19), 7580–7585 (2013).  https://doi.org/10.1073/pnas.1218806110CrossRefGoogle Scholar
  68. 68.
    Lu, Y., Chen, J.J., Mu, L., Xue, Q., Wu, Y., Wu, P.H., Li, J., Vortmeyer, A.O., Miller-Jensen, K., Wirtz, D., Fan, R.: High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85(4), 2548–2556 (2013).  https://doi.org/10.1021/ac400082eCrossRefGoogle Scholar
  69. 69.
    Shi, Q., Qin, L., Wei, W., Geng, F., Fan, R., Shin, Y.S., Guo, D., Hood, L., Mischel, P.S., Heath, J.R.: Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. U. S. A. 109(2), 419–424 (2012).  https://doi.org/10.1073/pnas.1110865109CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Division of Mechanical and Biomedical EngineeringEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of Chemical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Materials Science and Engineering and Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations