Theranostics: A Historical Perspective of Cancer Nanotechnology Paving the Way for Simultaneous Use Applications

  • Christopher M. Hartshorn
  • Stephanie A. MorrisEmail author
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)


Our modern view of theranostics derived from the initial intent to improve cancer patient outcomes by linking the selection and delivery of therapeutics to the results of diagnostic testing. This effort to combine diagnosis with therapy began in the 1990s along with the potential of using nanotechnology to do so. This was driven in part by dedicated cooperative funding efforts, such as the National Nanotechnology Initiative (2000) and the National Cancer Institute’s Alliance for Nanotechnology in Cancer (2004), but additionally by novel tools and fundamental science. Yet, our modern day understanding of cancer as well as materials at the nanoscale began long before the visualization of any of these lofty goals. The progress in the application of nanotechnology to cancer diagnosis and treatment is charted in this chapter to offer historical context of our past and to help drive our future.


Nanomedicine Theranostic History Cancer Faraday National Cancer Institute Hippocrates Liposome Nanoparticle Nanotechnology Translation Tumor Oncology Therapeutic Diagnostic Her2 Vaccine Oncogene Tumor suppressor Genome Inheritance Radiation therapy The Cancer Genome Atlas National Cancer Act Hallmarks of Cancer Twenty-first Century Cures Act Alliance for Nanotechnology in Cancer Nanotechnology Characterization Laboratory 


  1. 1.
    Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer. 17, 20–37 (2017). Scholar
  2. 2.
    Chan, W.C.W.: Nanomedicine 2.0. Acc. Chem. Res. 50, 627–632 (2017). Scholar
  3. 3.
    Natfji, A.A., Ravishankar, D., Osborn, H.M.I., Greco, F.: Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J. Pharm. Sci. 106, 3179–3187 (2017). Scholar
  4. 4.
    Hartshorn, C.M., Bradbury, M.S., Lanza, G.M., et al.: Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano. 12, 24 (2017). Scholar
  5. 5.
    Coleman, M.P.: War on cancer and the influence of the medical-industrial complex. J. Cancer Policy. 1, e31–e34 (2013). Scholar
  6. 6.
    Macilwain, C.: Change the cancer conversation. Nat News. 520, 7 (2015). Scholar
  7. 7.
    World Health Organization WHO Cancer Fact Sheet 2017. In: WHO. Accessed 1 Aug 2017
  8. 8.
    National Cancer Institute Cancer Statistics. In: Natl. Cancer Inst. Accessed 2 Aug 2017
  9. 9.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015). Scholar
  10. 10.
    American Cancer Society The History of Cancer. Accessed 1 Dec 2017
  11. 11.
    National Cancer Institute Progress in Cancer Research. In: Natl. Cancer Inst. Accessed 1 Dec 2017
  12. 12.
    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell. 100, 57–70 (2000). Scholar
  13. 13.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011). Scholar
  14. 14.
    Faraday, M.: The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)CrossRefGoogle Scholar
  15. 15.
    Feynman, R.: There’s plenty of room at the bottom. In: American Physical Society Annual Meeting. Pasadena, CA (1959)Google Scholar
  16. 16.
    Taniguchi, N.: On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering (1974)Google Scholar
  17. 17.
    Binnig, G., Rohrer, H.: Scanning tunneling microscopy. IBM J. Res. Dev. 30, 355–369 (1986)Google Scholar
  18. 18.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986). Scholar
  19. 19.
    Kroto, H.W., Heath, J.R., O’Brien, S.C., et al.: C60: Buckminsterfullerene. Nature. 318, 162 (1985). Scholar
  20. 20.
    Ekimov, A.I., Efros, A.L., Onushchenko, A.A.: Quantum size effect in semiconductor microcrystals. Solid State Commun. 56, 921–924 (1985). Scholar
  21. 21.
    Gabizon, A., Bradbury, M., Prabhakar, U., et al.: Cancer nanomedicines: closing the translational gap. Lancet. 384, 2175–2176 (2014). Scholar
  22. 22.
    Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016). Scholar
  23. 23.
    Bainbridge, W., Roco, M.: Handbook of Science and Technology Convergence. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  24. 24.
    Wang, P.C., Blumenthal, R.P., Zhao, Y., et al.: Building scientific progress without borders: nanobiology and nanomedicine in China and the U.S. Cancer Res. 69, 5294–5295 (2009). Scholar
  25. 25.
    Nagahara, L.A., Lee, J.S.H., Molnar, L.K., et al.: Strategic workshops on cancer nanotechnology. Cancer Res. 70, 4265–4268 (2010). Scholar
  26. 26.
    Ptak, K., Farrell, D., Panaro, N.J., et al.: The NCI alliance for nanotechnology in cancer: achievement and path forward. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 450–460 (2010). Scholar
  27. 27.
    Goldberg, M.S., Hook, S.S., Wang, A.Z., et al.: Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomed. 8, 299–308 (2013). Scholar
  28. 28.
    Bainbridge, W.S., Roco, M.C.: Science and technology convergence: with emphasis for nanotechnology-inspired convergence. J. Nanopart. Res. 18, 211 (2016). Scholar
  29. 29.
    Chakravarthy, R., Cotter, K., DiMasi, J.A., et al.: Public and Private Sector Contributions to the Research and Development of the Most Transformational Drugs of the Last 25 Years. Tufts University (2015)Google Scholar
  30. 30.
    Avorn, J.: The $2.6 billion pill — methodologic and policy considerations. N. Engl. J. Med. 372, 1877–1879 (2015). Scholar
  31. 31.
    DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016). Scholar
  32. 32.
    Shi, J., Xiao, Z., Kamaly, N., Farokhzad, O.C.: Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc. Chem. Res. 44, 1123–1134 (2011). Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Christopher M. Hartshorn
    • 1
  • Stephanie A. Morris
    • 1
    Email author
  1. 1.National Cancer Institute, NIH, Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and DiagnosisRockvilleUSA

Personalised recommendations