Advertisement

Nanomedicine in Cancer

  • Liang Ma
  • Phuong Le
  • Manish Kohli
  • Andrew M. SmithEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

This chapter provides a broad overview of the applications of nanotechnology in cancer medicine. The fundamental physics and chemistry of different classes of nanoparticles are first described to detail the origin of their useful emergent properties in the context of current needs in cancer medicine and standard clinical practices. Specific applications focus on cancer therapeutics, cancer imaging, and in vitro diagnostics. In particular, this chapter describes how nanocrystals exhibit unique and tunable interactions with light and magnetic fields that provide new means to both detect and manipulate tumor tissue. The tunable physical structures of nanomaterials also lead to unique interactions with biomolecules, cells, and tissues that have been instrumental in precisely controlling how drugs distribute in the body and localize to solid tumors. Emphasis is given to the potential benefits of theranostic materials that pair therapeutic and diagnostic capabilities to predict and monitor the progress of therapy.

Keywords

Nanoparticle Metal Semiconductor Magnetic Liposome Micelle Quantum dot Plasmonic Fluorescence Absorption Scattering Hyperthermia Photodynamic therapy Drug delivery Energy transfer Pharmacokinetics Biodistribution Targeting Endothelium Transport Permeability EPR effect Imaging Diagnostics Therapy 

References

  1. 1.
    Whitesides, G.M.: Nanoscience, nanotechnology, and chemistry. Small. 1, 172–179 (2005)CrossRefGoogle Scholar
  2. 2.
    Sarikaya, M., Tamerler, C., Jen, A.K.Y., et al.: Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003)CrossRefGoogle Scholar
  3. 3.
    Wong, I.Y., Bhatia, S.N., Toner, M.: Nanotechnology: emerging tools for biology and medicine. Genes Dev. 27, 2397–2408 (2013)CrossRefGoogle Scholar
  4. 4.
    Nie, S.M., Xing, Y., Kim, G.J., et al.: Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288 (2007)CrossRefGoogle Scholar
  5. 5.
    Heath, J.R., Davis, M.E.: Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008)CrossRefGoogle Scholar
  6. 6.
    Rose, P.G.: Pegylated liposomal doxorubicin: optimizing the dosing schedule in ovarian cancer. Oncologist. 10, 205–214 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang-Gillam, A., Li, C.P., Bodoky, G., et al.: Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 387, 545–557 (2016)CrossRefGoogle Scholar
  8. 8.
    Evers P (2015) Nanotechnology in medical applications: The Global Market. BCC ResearchGoogle Scholar
  9. 9.
    Theek, B., Rizzo, L.Y., Ehling, J., et al.: The theranostic path to personalized nanomedicine. Clin. Transl. Imag. 2, 67–76 (2014)CrossRefGoogle Scholar
  10. 10.
    Fornaguera, C., Garcia-Celma, M.J.: Personalized nanomedicine: a revolution at the nanoscale. J. Pers. Med. 7, 12 (2017)CrossRefGoogle Scholar
  11. 11.
    Kobeissy, F.H., Gulbakan, B., Alawieh, A., et al.: Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences. OMICS. 18, 111–131 (2014)CrossRefGoogle Scholar
  12. 12.
    Pelaz, B., Charron, G., Pfeiffer, C., et al.: Interfacing engineered nanoparticles with biological systems: anticipating adverse nanoBio interactions. Small. 9, 1573–1584 (2013)CrossRefGoogle Scholar
  13. 13.
    Albanese, A., Tang, P.S., Chan, W.C.W.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)CrossRefGoogle Scholar
  14. 14.
    Owens 3rd, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006)CrossRefGoogle Scholar
  15. 15.
    Bazak, R., Houri, M., El Achy, S., et al.: Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 141, 769–784 (2015)CrossRefGoogle Scholar
  16. 16.
    Blanco, E., Shen, H., Ferrari, M.: Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotech. 33, 941–951 (2015)CrossRefGoogle Scholar
  17. 17.
    Kim, J., Piao, Y., Hyeon, T.: Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009)CrossRefGoogle Scholar
  18. 18.
    Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006)CrossRefGoogle Scholar
  19. 19.
    Jain, P.K., Huang, X., El-Sayed, I.H., et al.: Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2, 107–118 (2007)CrossRefGoogle Scholar
  20. 20.
    Abadeer, N.S., Murphy, C.J.: Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C. 120, 4691–4716 (2016)CrossRefGoogle Scholar
  21. 21.
    Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016)Google Scholar
  22. 22.
    Smith, A.M., Nie, S.M.: Semiconductor nanocrystals: structure, properties, and bandgap engineering. Acc. Chem. Res. 43, 190–200 (2010)CrossRefGoogle Scholar
  23. 23.
    Juzenas, P., Chen, W., Sun, Y.P., et al.: Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60, 1600–1614 (2008)CrossRefGoogle Scholar
  24. 24.
    Gao, J., Gu, H., Xu, B.: Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)CrossRefGoogle Scholar
  25. 25.
    Haun, J.B., Yoon, T.-J., Lee, H., et al.: Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 291–304 (2010)CrossRefGoogle Scholar
  26. 26.
    Singh, A., Sahoo, S.K.: Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov. Today. 19, 474–481 (2014)CrossRefGoogle Scholar
  27. 27.
    Peer, D., Karp, J.M., Hong, S., et al.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotech. 2, 751–760 (2007)CrossRefGoogle Scholar
  28. 28.
    Israelachvili, J.N.: Intermolecular and surface forces, 3rd edn. Academic Press, Boston, MA (2011)Google Scholar
  29. 29.
    Georgakilas, V., Perman, J.A., Tucek, J., et al.: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015)CrossRefGoogle Scholar
  30. 30.
    Li, S.-D., Huang, L.: Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008)CrossRefGoogle Scholar
  31. 31.
    Florence, A.T.: The oral absorption of micro- and nanoparticulates: Neither exceptional nor unusual. Pharm. Res. 14, 259–266 (1997)CrossRefGoogle Scholar
  32. 32.
    Jain, R.K., Stylianopoulos, T.: Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)CrossRefGoogle Scholar
  33. 33.
    Komarova, Y., Malik, A.B.: Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu. Rev. Physiol. 72, 463–493 (2010)CrossRefGoogle Scholar
  34. 34.
    Chauhan, V.P., Stylianopoulos, T., Boucher, Y., et al.: Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu. Rev. Chem. Biomol. Eng. 2, 281–298 (2011)CrossRefGoogle Scholar
  35. 35.
    Kievit, F.M., Zhang, M.: Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 23, H217–H247 (2011)CrossRefGoogle Scholar
  36. 36.
    Toutain, P.L., Bousquet-Melou, A.: Plasma clearance. J. Vet. Pharmacol. Ther. 27, 415–425 (2004)CrossRefGoogle Scholar
  37. 37.
    Moeller, M.J., Tenten, V.: Renal albumin filtration: alternative models to the standard physical barriers. Nat. Rev. Neph. 9, 266–277 (2013)CrossRefGoogle Scholar
  38. 38.
    Sorensen, K.K., Simon-Santamaria, J., McCuskey, R.S., et al.: Liver Sinusoidal Endothelial Cells. Compr. Physiol. 5, 1751–1774 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y.N., Poon, W., Tavares, A.J., et al.: Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release. 240, 332–348 (2016)CrossRefGoogle Scholar
  40. 40.
    Goel, S., Duda, D.G., Xu, L., et al.: Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011)CrossRefGoogle Scholar
  41. 41.
    Allen, T.M., Cullis, P.R.: Drug delivery systems: Entering the mainstream. Science. 303, 1818–1822 (2004)CrossRefGoogle Scholar
  42. 42.
    Fang, J., Nakamura, H., Maeda, H.: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011)CrossRefGoogle Scholar
  43. 43.
    Wilhelm, S., Tavares, A.J., Dai, Q., et al.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)CrossRefGoogle Scholar
  44. 44.
    Jain, R.K.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987)Google Scholar
  45. 45.
    Chinen, A.B., Guan, C.M., Ferrer, J.R., et al.: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530–10574 (2015)CrossRefGoogle Scholar
  46. 46.
    Chauhan, V.P., Jain, R.K.: Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013)CrossRefGoogle Scholar
  47. 47.
    Chrastina, A., Massey, K.A., Schnitzer, J.E.: Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 421–437 (2011)CrossRefGoogle Scholar
  48. 48.
    Oh, P., Testa, J.E., Borgstrom, P., et al.: In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat. Med. 20, 1062–1068 (2014)CrossRefGoogle Scholar
  49. 49.
    Xu, X., Ho, W., Zhang, X., et al.: Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015)CrossRefGoogle Scholar
  50. 50.
    Duncan, R.: Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer. 6, 688–701 (2006)CrossRefGoogle Scholar
  51. 51.
    Alexis, F., Pridgen, E., Molnar, L.K., et al.: Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008)CrossRefGoogle Scholar
  52. 52.
    Ma, L., Kohli, M., Smith, A.: Nanoparticles for combination drug therapy. ACS Nano. 7, 9518–9525 (2013)CrossRefGoogle Scholar
  53. 53.
    Feldman, E.J., Lancet, J.E., Kolitz, J.E., et al.: First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 29, 979–985 (2011)CrossRefGoogle Scholar
  54. 54.
    Chatterjee, D.K., Fong, L.S., Zhang, Y.: Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008)CrossRefGoogle Scholar
  55. 55.
    Fitzpatrick, J.A.J., Andreko, S., Ernst, L.A., et al.: Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 9, 2736–2741 (2009)CrossRefGoogle Scholar
  56. 56.
    Tran, S., DeGiovanni, P.J., Piel, B., et al.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6, 44 (2017)CrossRefGoogle Scholar
  57. 57.
    Senzer, N., Nemunaitis, J., Nemunaitis, D., et al.: Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. 21, 1096–1103 (2013)CrossRefGoogle Scholar
  58. 58.
    Granot, Y., Peer, D.: Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin. Immunol. 34, 68–77 (2017)CrossRefGoogle Scholar
  59. 59.
    Jiang, W., Huang, Y., An, Y., et al.: Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano. 9, 8689–8696 (2015)CrossRefGoogle Scholar
  60. 60.
    Park, J.W., Kirpotin, D.B., Hong, K., et al.: Tumor targeting using anti-her2 immunoliposomes. J. Control. Release. 74, 95–113 (2001)CrossRefGoogle Scholar
  61. 61.
    Tirkes, T., Hollar, M.A., Tann, M., et al.: Response criteria in oncologic imaging: review of traditional and new criteria. Radiographics. 33, 1323–1341 (2013)CrossRefGoogle Scholar
  62. 62.
    Frangioni, J.V.: New technologies for human cancer imaging. J. Clin. Oncol. 26, 4012–4021 (2008)CrossRefGoogle Scholar
  63. 63.
    Key, J., Leary, J.F.: Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomedicine. 9, 711–726 (2014)Google Scholar
  64. 64.
    Maenosono, S., Suzuki, T., Saita, S.: Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 320, L79–L83 (2008)CrossRefGoogle Scholar
  65. 65.
    O'Farrell, A.C., Shnyder, S.D., Marston, G., et al.: Non-invasive molecular imaging for preclinical cancer therapeutic development. Br. J. Pharmacol. 169, 719–735 (2013)CrossRefGoogle Scholar
  66. 66.
    Dobrucki, L.W., Pan, D.J., Smith, A.M.: Multiscale imaging of nanoparticle drug delivery. Curr. Drug Targets. 16, 560–570 (2015)CrossRefGoogle Scholar
  67. 67.
    de Barros, A.L.B., Tsourkas, A., Saboury, B., et al.: Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res. 2, 39 (2012)CrossRefGoogle Scholar
  68. 68.
    Guerrero, S., Herance, J.R., Rojas, S., et al.: Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug. Chem. 23, 399–408 (2012)CrossRefGoogle Scholar
  69. 69.
    Wang, Y., Li, X., Zhou, Y., et al.: Preparation of nanobubbles for ultrasound imaging and intracellular drug delivery. Int. J. Pharm. 384, 148–153 (2010)CrossRefGoogle Scholar
  70. 70.
    Singhal, S., Nie, S.M., Wang, M.D.: Nanotechnology applications in surgical oncology. Annu. Rev. Med. 61, 359–373 (2010)CrossRefGoogle Scholar
  71. 71.
    Kaufmann, B.A., Lindner, J.R.: Molecular imaging with targeted contrast ultrasound. Curr. Opin. Biotechnol. 18, 11–16 (2007)CrossRefGoogle Scholar
  72. 72.
    Vahrmeijer, A.L., Hutteman, M., van der Vorst, J.R., et al.: Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013)CrossRefGoogle Scholar
  73. 73.
    Orbay, H., Bean, J., Zhang, Y., et al.: Intraoperative targeted optical imaging: a guide towards tumor-free margins in cancer surgery. Curr. Pharm. Biotechnol. 14, 733–742 (2014)CrossRefGoogle Scholar
  74. 74.
    Chi, C., Du, Y., Ye, J., et al.: Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 4, 1072–1084 (2014)CrossRefGoogle Scholar
  75. 75.
    Sivasubramanian, M., Hsia, Y., Lo, L.W.: Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front. Mol. Biosci. 1, 15 (2014)CrossRefGoogle Scholar
  76. 76.
    Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)CrossRefGoogle Scholar
  77. 77.
    Meads, C., Auguste, P., Davenport, C., et al.: Positron emission tomography/computerised tomography imaging in detecting and managing recurrent cervical cancer: systematic review of evidence, elicitation of subjective probabilities and economic modelling. Health Technol. Assess. 17, 1–323 (2013)Google Scholar
  78. 78.
    Ravizzini, G., Turkbey, B., Barrett, T., et al.: Nanoparticles in sentinel lymph node mapping. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 610–623 (2009)CrossRefGoogle Scholar
  79. 79.
    Phillips, E., Penate-Medina, O., Zanzonico, P.B., et al.: Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 6, 260ra149 (2014)CrossRefGoogle Scholar
  80. 80.
    Morton, J.G., Day, E.S., Halas, N.J., et al.: Nanoshells for photothermal cancer therapy. Methods Mol. Biol. 624, 101–117 (2010)CrossRefGoogle Scholar
  81. 81.
    Tan, Y.F., Chandrasekharan, P., Maity, D., et al.: Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials. 32, 2969–2978 (2011)CrossRefGoogle Scholar
  82. 82.
    Xie, J., Chen, K., Huang, J., et al.: PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 31, 3016–3022 (2010)CrossRefGoogle Scholar
  83. 83.
    Grandhi, T.S., Rege, K.: Design, synthesis, and functionalization of nanomaterials for therapeutic drug delivery. Adv. Exp. Med. Biol. 811, 157–182 (2014)CrossRefGoogle Scholar
  84. 84.
    Dobrucki, L.W., Sinusas, A.J.: PET and SPECT in cardiovascular molecular imaging. Nat. Rev. Cardiol. 7, 38–47 (2010)CrossRefGoogle Scholar
  85. 85.
    Dobrucki, L.W., de Muinck, E.D., Lindner, J.R., et al.: Approaches to Multimodality Imaging of Angiogenesis. J. Nucl. Med. 51(Suppl 1), 66S–79S (2010)CrossRefGoogle Scholar
  86. 86.
    Tang, L., Yang, X., Yin, Q., et al.: Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. U. S. A. 111, 15344–15349 (2014)CrossRefGoogle Scholar
  87. 87.
    Siravegna, G., Marsoni, S., Siena, S., et al.: Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 14, 531–548 (2017)CrossRefGoogle Scholar
  88. 88.
    Crowley, E., Di Nicolantonio, F., Loupakis, F., et al.: Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013)CrossRefGoogle Scholar
  89. 89.
    Elghanian, R., Storhoff, J.J., Mucic, R.C., et al.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 277, 1078–1081 (1997)CrossRefGoogle Scholar
  90. 90.
    Lee, H., Sun, E., Ham, D., et al.: Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008)CrossRefGoogle Scholar
  91. 91.
    Blanco-Canosa, J.B., Wu, M., Susumu, K., et al.: Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 263, 101–137 (2014)CrossRefGoogle Scholar
  92. 92.
    Zhou, K., Wang, Y., Huang, X., et al.: Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50, 6109–6114 (2011)CrossRefGoogle Scholar
  93. 93.
    Nguyen, H.H., Park, J., Kang, S., et al.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 15, 10481–10510 (2015)CrossRefGoogle Scholar
  94. 94.
    Cunningham, B.T., Zangar, R.C.: Photonic crystal enhanced fluorescence for early breast cancer biomarker detection. J. Biophotonics. 5(8–9), 617–628 (2012)CrossRefGoogle Scholar
  95. 95.
    Bhattacharya, S., Jang, J., Yang, L., et al.: BioMEMS and nanotechnology-based approaches for rapid detection of biological entities. J. Rapid Meth. Automat. Microbiol. 15, 1–32 (2007)CrossRefGoogle Scholar
  96. 96.
    Das, J., Ivanov, I., Montermini, L., et al.: An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat. Chem. 7, 569–575 (2015)CrossRefGoogle Scholar
  97. 97.
    Zhang, W., Hubbard, A., Brunhoeber, P., et al.: Automated multiplexing quantum dots in situ hybridization assay for simultaneous detection of ERG and PTEN gene status in prostate cancer. J. Mol. Diagn. 15, 754–764 (2013)CrossRefGoogle Scholar
  98. 98.
    Smith, A.M., Dave, S., Nie, S.M., et al.: Multicolor quantum dots for molecular diagnostics of cancer. Expert. Rev. Mol. Diagn. 6, 231–244 (2006)CrossRefGoogle Scholar
  99. 99.
    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301, 1884–1886 (2003)CrossRefGoogle Scholar
  100. 100.
    Jain, K.K.: Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta. 358, 37–54 (2005)CrossRefGoogle Scholar
  101. 101.
    Xie, J., Lee, S., Chen, X.: Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Liang Ma
    • 1
    • 2
  • Phuong Le
    • 2
    • 3
  • Manish Kohli
    • 4
  • Andrew M. Smith
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of OncologyMayo ClinicRochesterUSA

Personalised recommendations