Advertisement

Concluding Remarks and the Future of Nanotheranostics

  • Janel L. Kydd
  • Praveena Velpurisiva
  • Stephanie A. MorrisEmail author
  • Prakash RaiEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

The year 2018 is predicted to have more than 1.7 million cases of cancer diagnosed with approximately 609,640 mortalities resulting in equivocating 1700 deaths per day [1]. Of these cancers diagnosed, the most fatal and prevalent are lung, prostate, and colorectal in men and breast, lung, and colorectal cancer in women [1]. Prostate cancer will account for 20% of the oncologic disease incidence in men, while breast cancer will account for 63,960 cases in women [1]. The daily diagnoses of 4700 affected individuals render this type of pathology prominent and in dire need of finding more ways to effectively diagnose and treat patients, thus reducing the mortality associated with these various types of cancer [1]. A summary hereto to elaborate and reflect upon these efforts to improve the lives of patients and the rationale behind such attempts to further improve on detection and diagnosis and effectively treat cancer pathologies are discussed as we conclude this book.

References

  1. 1.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018).  https://doi.org/10.3322/caac.21442CrossRefGoogle Scholar
  2. 2.
    Bharathiraja, S., Bui, N.Q., Manivasagan, P., Moorthy, M.S., Mondal, S., Seo, H., Phuoc, N.T., Vy Phan, T.T., Kim, H., Lee, K.D., Oh, J.: Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci. Rep. 8(1), 500 (2018).  https://doi.org/10.1038/s41598-017-18966-8CrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Shan, W., Ai, C., Chen, Z., Zhou, T., Lv, X., Zhou, X., Ye, S., Ren, L., Wang, X.: Construction of multifunctional Fe3O4-MTX@HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nano. 2(1), 87–95 (2018).  https://doi.org/10.7150/ntno.21942CrossRefGoogle Scholar
  4. 4.
    Liu, L., Ruan, Z., Yuan, P., Li, T., Yan, L.: Oxygen self-sufficient amphiphilic polypeptide nanoparticles encapsulating BODIPY for potential near infrared imaging-guided photodynamic therapy at low energy. Nano. 2(1), 59–69 (2018).  https://doi.org/10.7150/ntno.22754CrossRefGoogle Scholar
  5. 5.
    Jung, E., Kang, C., Lee, J., Yoo, D., Hwang, D.W., Kim, D., Park, S.C., Lim, S.K., Song, C., Lee, D.: Molecularly engineered theranostic nanoparticles for thrombosed vessels: H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy. ACS Nano. 12(1), 392–401 (2018).  https://doi.org/10.1021/acsnano.7b06560CrossRefGoogle Scholar
  6. 6.
    Sonali, V.M.K., Singh, R.P., Agrawal, P., Mehata, A.K., Pawde, D.M., Narendra, S.R., Muthu, M.S.: Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nano. 2(1), 70–86 (2018).  https://doi.org/10.7150/ntno.21638CrossRefGoogle Scholar
  7. 7.
    Yu, G., Yung, B.C., Zhou, Z., Mao, Z., Chen, X.: Artificial molecular machines in nanotheranostics. ACS Nano. 12(1), 7–12 (2018).  https://doi.org/10.1021/acsnano.7b07851CrossRefGoogle Scholar
  8. 8.
    Sun, Q., You, Q., Wang, J., Liu, L., Wang, Y., Song, Y., Cheng, Y., Wang, S., Tan, F., Li, N.: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces. 10(2), 1963–1975 (2018).  https://doi.org/10.1021/acsami.7b13651CrossRefGoogle Scholar
  9. 9.
    Abraham, M.K., Peter, K., Michel, T., Wendel, H.P., Krajewski, S., Wang, X.: Nanoliposomes for safe and efficient therapeutic mRNA delivery: a step toward nanotheranostics in inflammatory and cardiovascular diseases as well as cancer. Nano. 1(2), 154–165 (2017).  https://doi.org/10.7150/ntno.19449CrossRefGoogle Scholar
  10. 10.
    Mieszawska, A.J., Mulder, W.J., Fayad, Z.A., Cormode, D.P.: Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10(3), 831–847 (2013).  https://doi.org/10.1021/mp3005885CrossRefGoogle Scholar
  11. 11.
    Peh, A.E., Leo, Y.S., Toh, C.S.: Current and nano-diagnostic tools for dengue infection. Front. Biosci. (Schol. Ed.). 3, 806–821 (2011)CrossRefGoogle Scholar
  12. 12.
    Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7(6), 1899–1912 (2010).  https://doi.org/10.1021/mp100228vCrossRefGoogle Scholar
  13. 13.
    Chen, D., Tang, Q., Zou, J., Yang, X., Huang, W., Zhang, Q., Shao, J., Dong, X.: pH-responsive PEG-doxorubicin-encapsulated Aza-BODIPY nanotheranostic agent for imaging-guided synergistic cancer therapy. Adv. Healthc. Mater. (2018).  https://doi.org/10.1002/adhm.201701272CrossRefGoogle Scholar
  14. 14.
    Dong, X., Yin, W., Zhang, X., Zhu, S., He, X., Yu, J., Xie, J., Guo, Z., Yan, L., Liu, X., Wang, Q., Gu, Z., Zhao, Y.: Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl. Mater. Interfaces. 10(4), 4271–4284 (2018).  https://doi.org/10.1021/acsami.7b17506CrossRefGoogle Scholar
  15. 15.
    Li, X., Yu, S., Lee, D., Kim, G., Lee, B., Cho, Y., Zheng, B.Y., Ke, M.R., Huang, J.D., Nam, K.T., Chen, X., Yoon, J.: Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy. ACS Nano. 12(1), 681–688 (2018).  https://doi.org/10.1021/acsnano.7b07809CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Xiong, Z., He, Y., Zhou, B., Qu, J., Shen, M., Shi, X., Xia, J.: Optimization of the composition and dosage of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool, tumor, and lymph node CT imaging. Mater. Sci. Eng. C Mater. Biol. Appl. 83, 9–16 (2018).  https://doi.org/10.1016/j.msec.2017.08.018CrossRefGoogle Scholar
  17. 17.
    Chen, H., Zhang, W., Zhu, G., Xie, J., Chen, X.: Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, (2017).  https://doi.org/10.1038/natrevmats.2017.24CrossRefGoogle Scholar
  18. 18.
    Chuang, S.Y., Lin, C.H., Huang, T.H., Fang, J.Y.: Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials (Basel). 8(1), (2018).  https://doi.org/10.3390/nano8010042CrossRefGoogle Scholar
  19. 19.
    VanDyke, D., Kyriacopulos, P., Yassini, B., Wright, A., Burkhart, E., Jacek, S., Pratt, M., Peterson, C.R., Rai, P.: Nanoparticle based combination treatments for targeting multiple hallmarks of cancer. Int. J. Nano Stud. Technol. Suppl 4, 1–18 (2016).  https://doi.org/10.19070/2167-8685-SI04001CrossRefGoogle Scholar
  20. 20.
    Tran, S., DeGiovanni, P.J., Piel, B., Rai, P.: Cancer nanomedicine: a review of recent success in drug delivery. Clin. Transl. Med. 6(1), 44 (2017).  https://doi.org/10.1186/s40169-017-0175-0CrossRefGoogle Scholar
  21. 21.
    Sneider, A., VanDyke, D., Paliwal, S., Rai, P.: Remotely triggered nano-theranostics for cancer applications. Nano. 1(1), 1–22 (2017).  https://doi.org/10.7150/ntno.17109CrossRefGoogle Scholar
  22. 22.
    Sneider, A., Jadia, R., Piel, B., VanDyke, D., Tsiros, C., Rai, P.: Engineering remotely triggered liposomes to target triple negative breast cancer. Oncomedicine. 2, 1–13 (2017).  https://doi.org/10.7150/oncm.17406CrossRefGoogle Scholar
  23. 23.
    Keservani, R.K., Sharma, A.K., Kesharwani, R.K.: Drug Delivery Approaches and Nanosystems, Volume 1: Novel Drug Carriers. CRC Press, New York (2017). https://www.taylorfrancis.com/books/e/9781351846707
  24. 24.
    M. F.: Brown Symposium XXXVI – Mauro Ferrari: “Nanomedicine and new societal horizons (trans: Ferrari M). Brown Symposium XXXVI USA (2014)Google Scholar
  25. 25.
    Moore, R.: Nanomedicine: rethinking medical training. Med. Device Technol. 19(1), 50, 52–53 (2008)Google Scholar
  26. 26.
    Jiang, W., Kim, S., Zhang, X., Lionberger, R.A., Davit, B.M., Conner, D.P., Yu, L.X.: The role of predictive biopharmaceutical modeling and simulation in drug development and regulatory evaluation. Int. J. Pharm. 418(2), 151–160 (2011).  https://doi.org/10.1016/j.ijpharm.2011.07.024CrossRefGoogle Scholar
  27. 27.
    Visser, S.A., Manolis, E., Danhof, M., Kerbusch, T.: Modeling and simulation at the interface of nonclinical and early clinical drug development. CPT Pharmacometrics. Syst. Pharmacol. 2, e30 (2013).  https://doi.org/10.1038/psp.2013.3CrossRefGoogle Scholar
  28. 28.
    Zhuang, X., Lu, C.: PBPK modeling and simulation in drug research and development. Acta Pharm. Sin. B. 6(5), 430–440 (2016).  https://doi.org/10.1016/j.apsb.2016.04.004CrossRefGoogle Scholar
  29. 29.
    Bawa, R.: Regulating nanomedicine – can the FDA handle it? Curr. Drug Deliv. 8(3), 227–234 (2011)CrossRefGoogle Scholar
  30. 30.
    Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016).  https://doi.org/10.1007/s11095-016-1958-5CrossRefGoogle Scholar
  31. 31.
    Dawidczyk, C.M., Kim, C., Park, J.H., Russell, L.M., Lee, K.H., Pomper, M.G., Searson, P.C.: State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J. Control. Release. 187, 133–144 (2014).  https://doi.org/10.1016/j.jconrel.2014.05.036CrossRefGoogle Scholar
  32. 32.
    Eifler, A.C., Thaxton, C.S.: Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol. Biol. 726, 325–338 (2011).  https://doi.org/10.1007/978-1-61779-052-2_21CrossRefGoogle Scholar
  33. 33.
    Research GV: Nanomedicine market analysis by products, (therapeutics, regenerative medicine, diagnostics), by application, (clinical oncology, infectious diseases), by nanomolecule (Gold, Silver, Iron Oxide, Alumina), & Segment Forecasts, 2018 – 2025 (2017)Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and BiotechnologyUniversity of Massachusetts LowellLowellUSA
  2. 2.National Cancer Institute, NIH, Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and DiagnosisRockvilleUSA
  3. 3.Department of Chemical EngineeringUniversity of Massachusetts LowellLowellUSA

Personalised recommendations