Advertisement

Remotely Triggered Nanotheranostics

  • Abdul K. Parchur
  • Jaidip M. Jagtap
  • Gayatri Sharma
  • Venkateswara Gogineni
  • Sarah B. WhiteEmail author
  • Amit JoshiEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

The emerging field of nanotheranostics refers to tens to hundreds of nanometer size constructs that combine diagnostic and therapeutic agents. The favorable and tunable bio-distribution of nanotheranostic agents to disease site can enable seamless image-guided therapies and achieve spatial control of drug delivery. Remotely triggered nanotheranostics with specific material composition build upon these emerging nanomedicine agents to enable external field directed drug release or tumor ablation, thereby achieving complete spatiotemporal control of therapeutic action. In recent years, a multitude of external field-triggered nanotheranostic agents have been proposed for the imaging and treatment of cancer. In this chapter, we provide a concise review of nanotheranostics triggered by electromagnetic, ultrasonic, or thermal fields, including their progress from preclinical validation of clinical trials and the challenges and outlook for remotely triggered nanomedicine. A survey of the literature covered in the chapter indicates extensive progress in preclinical validation and exceptional efficacy of solid tumor-directed nanotheranostics, especially with thermal or photochemically ablative modalities. Clinical studies are currently limited to hyperthermia-based chemotherapy release from nanocarriers, but with increased interest and investments, translation of a wide gamut of remotely triggered nanotheranostics is feasible.

Keywords

Ablation Biodistribution Cancer therapy Chemotherapy Clinical trials Contrast agents Drug delivery Drug release Fluorescence Gold nanorods Hyperthermia Imaging Image guided Liposomes Magnetic nanoparticles Microwave Nanoparticles Nanotheranostics Photodynamic therapy Photothermal therapy Plasmonic Radiation Remotely triggered Theranostic Ultrasound Uptake 

References

  1. 1.
    American Cancer Society: Cancer Facts & Figures 2016. American Cancer Society, Atlanta (2016)Google Scholar
  2. 2.
    Clark, A.J., Wiley, D.T., Zuckerman, J.E., Webster, P., Chao, J., Lin, J., Yen, Y., Davis, M.E.: CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc. Natl. Acad. Sci. U. S. A. 113(14), 3850–3854 (2016).  https://doi.org/10.1073/pnas.1603018113CrossRefGoogle Scholar
  3. 3.
    Apply nanotech to up industrial, agri output. The Daily Star (Bangladesh), April 17, 2012Google Scholar
  4. 4.
    Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., Grobmyer, S.R.: Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 107(3), 459–466 (2006).  https://doi.org/10.1002/cncr.22035CrossRefGoogle Scholar
  5. 5.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016).  https://doi.org/10.3322/caac.21332CrossRefGoogle Scholar
  6. 6.
    Miller, S.M., Wang, A.Z.: Nanomedicine in chemoradiation. Ther. Deliv. 4(2), 239–250 (2013).  https://doi.org/10.4155/tde.12.147CrossRefGoogle Scholar
  7. 7.
    American Cancer Society: Cancer Treatment & Survivorship Facts & Figures 2016–2017. American Cancer Society, Atlanta (2016)Google Scholar
  8. 8.
    Nanomaterials in Theranostics: Global Markets. PR Newswire, New York (2013)Google Scholar
  9. 9.
    Albanese, A., Tang, P.S., Chan, W.C.: The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).  https://doi.org/10.1146/annurev-bioeng-071811-150124CrossRefGoogle Scholar
  10. 10.
    Muhanna, N., Jin, C.S., Huynh, E., Chan, H., Qiu, Y., Jiang, W., Cui, L., Burgess, L., Akens, M.K., Chen, J., Irish, J.C., Zheng, G.: Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics. 5(12), 1428–1443 (2015).  https://doi.org/10.7150/thno.13451CrossRefGoogle Scholar
  11. 11.
    Caldorera-Moore, M., Guimard, N., Shi, L., Roy, K.: Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv. 7(4), 479–495 (2010).  https://doi.org/10.1517/17425240903579971CrossRefGoogle Scholar
  12. 12.
    Alexandra, S., Derek, V., Paliwal, S., Prakash, R.: Remotely triggered nano-theranostics for cancer applications. Nano. 2017(1), 1–22 (2016).  https://doi.org/10.7150/ntno.17109CrossRefGoogle Scholar
  13. 13.
    Sakdinawat, A., Attwood, D.: Nanoscale X-ray imaging. Nat. Photonics. 4(12), 840–848 (2010).  https://doi.org/10.1038/nphoton.2010.267CrossRefGoogle Scholar
  14. 14.
    Cui, S., Yin, D., Chen, Y., Di, Y., Chen, H., Ma, Y., Achilefu, S., Gu, Y.: In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano. 7(1), 676–688 (2013).  https://doi.org/10.1021/nn304872nCrossRefGoogle Scholar
  15. 15.
    Urban, C., Urban, A.S., Charron, H., Joshi, A.: Externally modulated theranostic nanoparticles. Transl. Cancer. Res. 2(4), 292–308 (2013).  https://doi.org/10.3978/j.issn.2218-676X.2013.08.05CrossRefGoogle Scholar
  16. 16.
    Liu, K., Xue, X., Furlani, E.P.: Theoretical comparison of optical properties of near-infrared colloidal plasmonic nanoparticles. Sci. Rep. 6, 34189 (2016).  https://doi.org/10.1038/srep34189CrossRefGoogle Scholar
  17. 17.
    Martin, K.H., Dayton, P.A.: Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(4), 329–345 (2013).  https://doi.org/10.1002/wnan.1219CrossRefGoogle Scholar
  18. 18.
    Stern, J.M., Cadeddu, J.A.: Emerging use of nanoparticles for the therapeutic ablation of urologic malignancies. Urol. Oncol. 26(1), 93–96 (2008).  https://doi.org/10.1016/j.urolonc.2007.03.019CrossRefGoogle Scholar
  19. 19.
    Hayashi, K., Nakamura, M., Miki, H., Ozaki, S., Abe, M., Matsumoto, T., Sakamoto, W., Yogo, T., Ishimura, K.: Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics. 4(8), 834–844 (2014).  https://doi.org/10.7150/thno.9199CrossRefGoogle Scholar
  20. 20.
    Starkewolf, Z.B., Miyachi, L., Wong, J., Guo, T.: X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem. Commun. (Camb.). 49(25), 2545–2547 (2013).  https://doi.org/10.1039/c3cc38100eCrossRefGoogle Scholar
  21. 21.
    Kascakova, S., Giuliani, A., Lacerda, S., Pallier, A., Mercere, P., Toth, E., Refregiers, M.: X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 8(7), 2373–2379 (2015).  https://doi.org/10.1007/s12274-015-0747-5CrossRefGoogle Scholar
  22. 22.
    Akamatsu, K.: Development of ‘leaky’ liposome triggered by radiation applicable to a drug reservoir and a simple radiation dosimeter. Appl. Radiat. Isot. 74, 144–151 (2013).  https://doi.org/10.1016/j.apradiso.2013.01.024CrossRefGoogle Scholar
  23. 23.
    Ayala-Orozco, C., Urban, C., Knight, M.W., Urban, A.S., Neumann, O., Bishnoi, S.W., Mukherjee, S., Goodman, A.M., Charron, H., Mitchell, T., Shea, M., Roy, R., Nanda, S., Schiff, R., Halas, N.J., Joshi, A.: Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano. 8(6), 6372–6381 (2014).  https://doi.org/10.1021/nn501871dCrossRefGoogle Scholar
  24. 24.
    Rengan, A.K., Bukhari, A.B., Pradhan, A., Malhotra, R., Banerjee, R., Srivastava, R., De, A.: In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 15(2), 842–848 (2015).  https://doi.org/10.1021/nl5045378CrossRefGoogle Scholar
  25. 25.
    Kuo, C.Y., Liu, T.Y., Chan, T.Y., Tsai, S.C., Hardiansyah, A., Huang, L.Y., Yang, M.C., Lu, R.H., Jiang, J.K., Yang, C.Y., Lin, C.H., Chiu, W.Y.: Magnetically triggered nanovehicles for controlled drug release as a colorectal cancer therapy. Colloids Surf. B Biointerfaces. 140, 567–573 (2016).  https://doi.org/10.1016/j.colsurfb.2015.11.008CrossRefGoogle Scholar
  26. 26.
    Xiao, Q., Zheng, X., Bu, W., Ge, W., Zhang, S., Chen, F., Xing, H., Ren, Q., Fan, W., Zhao, K., Hua, Y., Shi, J.: A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 135(35), 13041–13048 (2013).  https://doi.org/10.1021/ja404985wCrossRefGoogle Scholar
  27. 27.
    Sine, J., Urban, C., Thayer, D., Charron, H., Valim, N., Tata, D.B., Schiff, R., Blumenthal, R., Joshi, A., Puri, A.: Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. Int. J. Nanomedicine. 10, 125–145 (2015).  https://doi.org/10.2147/IJN.S72143CrossRefGoogle Scholar
  28. 28.
    Han, R., Yi, H., Shi, J., Liu, Z., Wang, H., Hou, Y., Wang, Y.: pH-Responsive drug release and NIR-triggered singlet oxygen generation based on a multifunctional core-shell-shell structure. Phys. Chem. Chem. Phys. 18(36), 25497–25503 (2016).  https://doi.org/10.1039/c6cp05308dCrossRefGoogle Scholar
  29. 29.
    Zhang, D., Qi, G.B., Zhao, Y.X., Qiao, S.L., Yang, C., Wang, H.: In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 27(40), 6125–6130 (2015).  https://doi.org/10.1002/adma.201502598CrossRefGoogle Scholar
  30. 30.
    Spring, B.Q., Bryan Sears, R., Zheng, L.Z., Mai, Z., Watanabe, R., Sherwood, M.E., Schoenfeld, D.A., Pogue, B.W., Pereira, S.P., Villa, E., Hasan, T.: A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 11(4), 378–387 (2016).  https://doi.org/10.1038/nnano.2015.311CrossRefGoogle Scholar
  31. 31.
    Carter, K.A., Shao, S., Hoopes, M.I., Luo, D., Ahsan, B., Grigoryants, V.M., Song, W., Huang, H., Zhang, G., Pandey, R.K., Geng, J., Pfeifer, B.A., Scholes, C.P., Ortega, J., Karttunen, M., Lovell, J.F.: Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat. Commun. 5, 3546 (2014).  https://doi.org/10.1038/ncomms4546CrossRefGoogle Scholar
  32. 32.
    Chen, Q., Liang, C., Wang, C., Liu, Z.: An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 27(5), 903–910 (2015).  https://doi.org/10.1002/adma.201404308CrossRefGoogle Scholar
  33. 33.
    Peng, H., Cui, B., Zhao, W., Wang, Y., Chang, Z.: Glycine-functionalized Fe3O4@TiO2:Er(3+),Yb(3+) nanocarrier for microwave-triggered controllable drug release and study on mechanism of loading/release process using microcalorimetry. Expert Opin. Drug Deliv. 12(9), 1397–1409 (2015).  https://doi.org/10.1517/17425247.2015.1031652CrossRefGoogle Scholar
  34. 34.
    Long, D., Liu, T.L., Tan, L.F., Shi, H.T., Liang, P., Tang, S.S., Wu, Q., Yu, J., Dou, J.P., Meng, X.W.: Multisynergistic platform for tumor therapy by mild microwave irradiation-activated chemotherapy and enhanced ablation. ACS Nano. 10(10), 9516–9528 (2016).  https://doi.org/10.1021/acsnano.6b04749CrossRefGoogle Scholar
  35. 35.
    Oliveira, H., Perez-Andres, E., Thevenot, J., Sandre, O., Berra, E., Lecommandoux, S.: Magnetic field triggered drug release from polymersomes for cancer therapeutics. J. Control. Release. 169(3), 165–170 (2013).  https://doi.org/10.1016/j.jconrel.2013.01.013CrossRefGoogle Scholar
  36. 36.
    Derfus, A.M., von Maltzahn, G., Harris, T.J., Duza, T., Vecchio, K.S., Ruoslahti, E., Bhatia, S.N.: Remotely triggered release from magnetic nanoparticles. Adv. Mater. 19(22), 3932–3936 (2007).  https://doi.org/10.1002/adma.200700091CrossRefGoogle Scholar
  37. 37.
    Hayashi, K., Ono, K., Suzuki, H., Sawada, M., Moriya, M., Sakamoto, W., Yogo, T.: High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl. Mater. Interfaces. 2(7), 1903–1911 (2010).  https://doi.org/10.1021/am100237pCrossRefGoogle Scholar
  38. 38.
    Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., Yang, W.: Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials. 39, 67–74 (2015).  https://doi.org/10.1016/j.biomaterials.2014.10.064CrossRefGoogle Scholar
  39. 39.
    Wang, L., Zhang, P., Shi, J., Hao, Y., Meng, D., Zhao, Y., Yanyan, Y., Li, D., Chang, J., Zhang, Z.: Radiofrequency-triggered tumor-targeting delivery system for theranostics application. ACS Appl. Mater. Interfaces. 7(10), 5736–5747 (2015).  https://doi.org/10.1021/am507898zCrossRefGoogle Scholar
  40. 40.
    Somasundaram, V.H., Pillai, R., Malarvizhi, G., Ashokan, A., Gowd, S., Peethambaran, R., Palaniswamy, S., Unni, A.K.K., Nair, S., Koyakutty, M.: Biodegradable radiofrequency responsive nanoparticles for augmented thermal ablation combined with triggered drug release in liver tumors. ACS Biomater Sci. Eng. 2(5), 768–779 (2016).  https://doi.org/10.1021/acsbiomaterials.5b00511CrossRefGoogle Scholar
  41. 41.
    Bariana, M., Aw, M.S., Moore, E., Voelcker, N.H., Losic, D.: Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomedicine (Lond.). 9(8), 1263–1275 (2014).  https://doi.org/10.2217/nnm.13.93CrossRefGoogle Scholar
  42. 42.
    Griffete, N., Fresnais, J., Espinosa, A., Wilhelm, C., Bee, A., Menager, C.: Design of magnetic molecularly imprinted polymer nanoparticles for controlled release of doxorubicin under an alternative magnetic field in athermal conditions. Nanoscale. 7(45), 18891–18896 (2015).  https://doi.org/10.1039/c5nr06133dCrossRefGoogle Scholar
  43. 43.
    Kong, G., Anyarambhatla, G., Petros, W.P., Braun, R.D., Colvin, O.M., Needham, D., Dewhirst, M.W.: Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 60(24), 6950–6957 (2000)Google Scholar
  44. 44.
    Shirakura, T., Kelson, T.J., Ray, A., Malyarenko, A.E., Kopelman, R.: Hydrogel nanoparticles with thermally controlled drug release. ACS Macro Lett. 3(7), 602–606 (2014).  https://doi.org/10.1021/mz500231eCrossRefGoogle Scholar
  45. 45.
    Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., ten Hagen, T.L., Needham, D., Dewhirst, M.W.: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 72(21), 5566–5575 (2012).  https://doi.org/10.1158/0008-5472.CAN-12-1683CrossRefGoogle Scholar
  46. 46.
    Paris, J.L., Cabanas, M.V., Manzano, M., Vallet-Regi, M.: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 9(11), 11023–11033 (2015).  https://doi.org/10.1021/acsnano.5b04378CrossRefGoogle Scholar
  47. 47.
    Zhang, K., Xu, H., Jia, X., Chen, Y., Ma, M., Sun, L., Chen, H.: Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano. 10(12), 10816–10828 (2016).  https://doi.org/10.1021/acsnano.6b04921CrossRefGoogle Scholar
  48. 48.
    Ektate, K., Kapoor, A., Maples, D., Tuysuzoglu, A., VanOsdol, J., Ramasami, S., Ranjan, A.: Motion compensated ultrasound imaging allows thermometry and image guided drug delivery monitoring from echogenic liposomes. Theranostics. 6(11), 1963–1974 (2016).  https://doi.org/10.7150/thno.15922CrossRefGoogle Scholar
  49. 49.
    Antosh, M.P., Wijesinghe, D.D., Shrestha, S., Lanou, R., Huang, Y.H., Hasselbacher, T., Fox, D., Neretti, N., Sun, S., Katenka, N., Cooper, L.N., Andreev, O.A., Reshetnyak, Y.K.: Enhancement of radiation effect on cancer cells by gold-pHLIP. Proc. Natl. Acad. Sci. U. S. A. 112(17), 5372–5376 (2015).  https://doi.org/10.1073/pnas.1501628112CrossRefGoogle Scholar
  50. 50.
    Ghaemi, B., Mashinchian, O., Mousavi, T., Karimi, R., Kharrazi, S., Amani, A.: Harnessing the cancer radiation therapy by lanthanide-doped zinc oxide based theranostic nanoparticles. ACS Appl. Mater. Interfaces. 8(5), 3123–3134 (2016).  https://doi.org/10.1021/acsami.5b10056CrossRefGoogle Scholar
  51. 51.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B. 110, 7238–7248 (2006).  https://doi.org/10.1021/jp057170oCrossRefGoogle Scholar
  52. 52.
    Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z.-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X., Xia, Y.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5, 473–477 (2005).  https://doi.org/10.1021/nl047950tCrossRefGoogle Scholar
  53. 53.
    Radloff, C., Halas, N.J.: Plasmonic properties of concentric nanoshells. Nano Lett. 4, 1323–1327 (2004).  https://doi.org/10.1021/nl049597xCrossRefGoogle Scholar
  54. 54.
    Cole, J., Halas, N.J.: Photothermal efficiencies of nanorods and nanoshells. J. Phys. Chem. C. 113, 12090–12094 (2009)CrossRefGoogle Scholar
  55. 55.
    von Maltzahn, G., Centrone, A., Park, J.H., Ramanathan, R., Sailor, M.J., Hatton, T.A., Bhatia, S.N.: SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21(31), 3175–3180 (2009).  https://doi.org/10.1002/adma.200803464CrossRefGoogle Scholar
  56. 56.
    von Maltzahn, G., Park, J.H., Agrawal, A., Bandaru, N.K., Das, S.K., Sailor, M.J., Bhatia, S.N.: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69(9), 3892–3900 (2009).  https://doi.org/10.1158/0008-5472.CAN-08-4242CrossRefGoogle Scholar
  57. 57.
    Bardhan, R., Grady, N.K., Cole, J.R., Joshi, A., Halas, N.J.: Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano. 3(3), 744–752 (2009).  https://doi.org/10.1021/nn900001qCrossRefGoogle Scholar
  58. 58.
    Shi, H., Niu, M., Tan, L., Liu, T., Shao, H., Fu, C., Ren, X., Ma, T., Ren, J., Li, L., Liu, H., Xu, K., Wang, J., Tang, F., Meng, X.: A smart all-in-one theranostic platform for CT imaging guided tumor microwave thermotherapy based on IL@ZrO2 nanoparticles. Chem. Sci. 6(8), 5016–5026 (2015).  https://doi.org/10.1039/c5sc00781jCrossRefGoogle Scholar
  59. 59.
    Shi, H., Liu, T., Fu, C., Li, L., Tan, L., Wang, J., Ren, X., Ren, J., Meng, X.: Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy. Biomaterials. 44, 91–102 (2015).  https://doi.org/10.1016/j.biomaterials.2014.12.035CrossRefGoogle Scholar
  60. 60.
    Tan, L., Tang, W., Liu, T., Ren, X., Fu, C., Liu, B., Ren, J., Meng, X.: Biocompatible hollow polydopamine nanoparticles loaded ionic liquid enhanced tumor microwave thermal ablation in vivo. ACS Appl. Mater. Interfaces. 8(18), 11237–11245 (2016).  https://doi.org/10.1021/acsami.5b12329CrossRefGoogle Scholar
  61. 61.
    Suseela, S., Urdaneta, M., Wahid, P.: Use of magnetic nanoparticles in microwave ablation. In: Wireless and Microwave Technology Conference (WAMICON), 2015 IEEE 16th Annual, 13–15 April 2015 2015. pp 1–4.  https://doi.org/10.1109/wamicon.2015.7120415
  62. 62.
    Bijukumar, D., Girish, C.M., Sasidharan, A., Nair, S., Koyakutty, M.: Transferrin-conjugated biodegradable graphene for targeted radiofrequency ablation of hepatocellular carcinoma. ACS Biomater Sci. Eng. 1(12), 1211–1219 (2015).  https://doi.org/10.1021/acsbiomaterials.5b00184CrossRefGoogle Scholar
  63. 63.
    Gobbo, O.L., Sjaastad, K., Radomski, M.W., Volkov, Y., Prina-Mello, A.: Magnetic nanoparticles in cancer theranostics. Theranostics. 5(11), 1249–1263 (2015).  https://doi.org/10.7150/thno.11544CrossRefGoogle Scholar
  64. 64.
    Johnson, N.J.J., Oakden, W., Stanisz, G.J., Scott Prosser, R., van Veggel, F.C.J.M.: Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement. Chem. Mater. 23(16), 3714–3722 (2011).  https://doi.org/10.1021/cm201297xCrossRefGoogle Scholar
  65. 65.
    Rotz, M.W., Culver, K.S., Parigi, G., MacRenaris, K.W., Luchinat, C., Odom, T.W., Meade, T.J.: High relaxivity Gd(III)-DNA gold nanostars: investigation of shape effects on proton relaxation. ACS Nano. 9(3), 3385–3396 (2015).  https://doi.org/10.1021/nn5070953CrossRefGoogle Scholar
  66. 66.
    Andrä, W.N., Hannes: Magnetism in Medicine: A Handbook, 1st edn, Wiley-VCH, Berlin (1998)Google Scholar
  67. 67.
    Cherukuri, P., Glazer, E.S., Curley, S.A.: Targeted hyperthermia using metal nanoparticles. Adv. Drug Deliv. Rev. 62(3), 339–345 (2010).  https://doi.org/10.1016/j.addr.2009.11.006CrossRefGoogle Scholar
  68. 68.
    Chen, J., White, S.B., Harris, K.R., Li, W., Yap, J.W., Kim, D.H., Lewandowski, R.J., Shea, L.D., Larson, A.C.: Poly(lactide-co-glycolide) microspheres for MRI-monitored delivery of sorafenib in a rabbit VX2 model. Biomaterials. 61, 299–306 (2015).  https://doi.org/10.1016/j.biomaterials.2015.05.010CrossRefGoogle Scholar
  69. 69.
    Rai, P., Mallidi, S., Zheng, X., Rahmanzadeh, R., Mir, Y., Elrington, S., Khurshid, A., Hasan, T.: Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62(11), 1094–1124 (2010).  https://doi.org/10.1016/j.addr.2010.09.002CrossRefGoogle Scholar
  70. 70.
    Xing, H., Hwang, K., Lu, Y.: Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics. 6(9), 1336–1352 (2016).  https://doi.org/10.7150/thno.15464CrossRefGoogle Scholar
  71. 71.
    Tashjian, J.A., Dewhirst, M.W., Needham, D., Viglianti, B.L.: Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques. Int. J. Hyperth. 24(1), 79–90 (2008).  https://doi.org/10.1080/02656730701840147CrossRefGoogle Scholar
  72. 72.
    Song, X., Feng, L., Liang, C., Yang, K., Liu, Z.: Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 16(10), 6145–6153 (2016).  https://doi.org/10.1021/acs.nanolett.6b02365CrossRefGoogle Scholar
  73. 73.
    You, D.G., Deepagan, V.G., Um, W., Jeon, S., Son, S., Chang, H., Yoon, H.I., Cho, Y.W., Swierczewska, M., Lee, S., Pomper, M.G., Kwon, I.C., Kim, K., Park, J.H.: ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 6, 23200 (2016).  https://doi.org/10.1038/srep23200CrossRefGoogle Scholar
  74. 74.
    Lentacker, I., Geers, B., Demeester, J., De Smedt, S.C., Sanders, N.N.: Tumor cell killing efficiency of doxorubicin loaded microbubbles after ultrasound exposure. J. Control. Release. 148(1), e113–e114 (2010).  https://doi.org/10.1016/j.jconrel.2010.07.085CrossRefGoogle Scholar
  75. 75.
    Suzuki, R., Namai, E., Oda, Y., Nishiie, N., Otake, S., Koshima, R., Hirata, K., Taira, Y., Utoguchi, N., Negishi, Y., Nakagawa, S., Maruyama, K.: Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J. Control. Release. 142(2), 245–250 (2010).  https://doi.org/10.1016/j.jconrel.2009.10.027CrossRefGoogle Scholar
  76. 76.
    Rapoport, N., Gao, Z., Kennedy, A.: Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer Inst. 99(14), 1095–1106 (2007).  https://doi.org/10.1093/jnci/djm043CrossRefGoogle Scholar
  77. 77.
    Ferrara, K., Pollard, R., Borden, M.: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).  https://doi.org/10.1146/annurev.bioeng.8.061505.095852CrossRefGoogle Scholar
  78. 78.
    Figueiredo, M., Esenaliev, R.: PLGA nanoparticles for ultrasound-mediated gene delivery to solid tumors. J. Drug Del. 2012, 767839 (2012).  https://doi.org/10.1155/2012/767839CrossRefGoogle Scholar
  79. 79.
    Min, H.S., You, D.G., Son, S., Jeon, S., Park, J.H., Lee, S., Kwon, I.C., Kim, K.: Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics. 5(12), 1402–1418 (2015).  https://doi.org/10.7150/thno.13099CrossRefGoogle Scholar
  80. 80.
    Taniyama, Y., Azuma, J., Rakugi, H., Morishita, R.: Plasmid DNA-based gene transfer with ultrasound and microbubbles. Curr. Gene Ther. 11(6), 485–490 (2011)CrossRefGoogle Scholar
  81. 81.
    Wong, A.W., Fite, B.Z., Liu, Y., Kheirolomoom, A., Seo, J.W., Watson, K.D., Mahakian, L.M., Tam, S.M., Zhang, H., Foiret, J., Borowsky, A.D., Ferrara, K.W.: Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models. J. Clin. Invest. 126(1), 99–111 (2016).  https://doi.org/10.1172/JCI83312CrossRefGoogle Scholar
  82. 82.
    Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell. 100(1), 57–70 (2000)CrossRefGoogle Scholar
  83. 83.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011).  https://doi.org/10.1016/j.cell.2011.02.013CrossRefGoogle Scholar
  84. 84.
    Bisht, S., Maitra, A.: Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(4), 415–425 (2009).  https://doi.org/10.1002/wnan.43CrossRefGoogle Scholar
  85. 85.
    Lammers, T., Kiessling, F., Hennink, W.E., Storm, G.: Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J. Control. Release. 161(2), 175–187 (2012).  https://doi.org/10.1016/j.jconrel.2011.09.063CrossRefGoogle Scholar
  86. 86.
    Yan, Y., Li, G.X., Yuan, J.S.: Study on mechanism of eye-signs in blood stasis syndrome. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban. 16(4), 213–215 (1996)Google Scholar
  87. 87.
    McNeil, S.E.: Nanotechnology for the biologist. J. Leukoc. Biol. 78(3), 585–594 (2005).  https://doi.org/10.1189/jlb.0205074CrossRefGoogle Scholar
  88. 88.
    Peng, X.H., Qian, X., Mao, H., Wang, A.Y., Chen, Z.G., Nie, S., Shin, D.M.: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int. J. Nanomedicine. 3(3), 311–321 (2008)Google Scholar
  89. 89.
    Huang, X., Peng, X., Wang, Y., Shin, D.M., El-Sayed, M.A., Nie, S.: A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano. 4(10), 5887–5896 (2010).  https://doi.org/10.1021/nn102055sCrossRefGoogle Scholar
  90. 90.
    Nie, S.: Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond.). 5(4), 523–528 (2010).  https://doi.org/10.2217/nnm.10.23CrossRefGoogle Scholar
  91. 91.
    Bartlett, D.W., Su, H., Hildebrandt, I.J., Weber, W.A., Davis, M.E.: Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104(39), 15549–15554 (2007).  https://doi.org/10.1073/pnas.0707461104CrossRefGoogle Scholar
  92. 92.
    Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Yuan, F., Chilkoti, A.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98(5), 335–344 (2006).  https://doi.org/10.1093/jnci/djj070CrossRefGoogle Scholar
  93. 93.
    Mamot, C., Ritschard, R., Wicki, A., Stehle, G., Dieterle, T., Bubendorf, L., Hilker, C., Deuster, S., Herrmann, R., Rochlitz, C.: Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 13(12), 1234–1241 (2012).  https://doi.org/10.1016/S1470-2045(12)70476-XCrossRefGoogle Scholar
  94. 94.
    Weiss, G.J., Chao, J., Neidhart, J.D., Ramanathan, R.K., Bassett, D., Neidhart, J.A., Choi, C.H., Chow, W., Chung, V., Forman, S.J., Garmey, E., Hwang, J., Kalinoski, D.L., Koczywas, M., Longmate, J., Melton, R.J., Morgan, R., Oliver, J., Peterkin, J.J., Ryan, J.L., Schluep, T., Synold, T.W., Twardowski, P., Davis, M.E., Yen, Y.: First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Investig. New Drugs. 31(4), 986–1000 (2013).  https://doi.org/10.1007/s10637-012-9921-8CrossRefGoogle Scholar
  95. 95.
    Pillai, G.: Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. Pharm. Pharm. Sci. 1(2), 13 (2014)Google Scholar
  96. 96.
    Karimi, M., Ghasemi, A., Sahandi Zangabad, P., Rahighi, R., Moosavi Basri, S.M., Mirshekari, H., Amiri, M., Shafaei Pishabad, Z., Aslani, A., Bozorgomid, M., Ghosh, D., Beyzavi, A., Vaseghi, A., Aref, A.R., Haghani, L., Bahrami, S., Hamblin, M.R.: Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 45(5), 1457–1501 (2016).  https://doi.org/10.1039/c5cs00798dCrossRefGoogle Scholar
  97. 97.
    Stern, J.M., Kibanov Solomonov, V.V., Sazykina, E., Schwartz, J.A., Gad, S.C., Goodrich, G.P.: Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int. J. Toxicol. 35(1), 38–46 (2016).  https://doi.org/10.1177/1091581815600170CrossRefGoogle Scholar
  98. 98.
    Gad, S.C., Sharp, K.L., Montgomery, C., Payne, J.D., Goodrich, G.P.: Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int. J. Toxicol. 31(6), 584–594 (2012).  https://doi.org/10.1177/1091581812465969CrossRefGoogle Scholar
  99. 99.
    Zagar, T.M., Vujaskovic, Z., Formenti, S., Rugo, H., Muggia, F., O'Connor, B., Myerson, R., Stauffer, P., Hsu, I.C., Diederich, C., Straube, W., Boss, M.K., Boico, A., Craciunescu, O., Maccarini, P., Needham, D., Borys, N., Blackwell, K.L., Dewhirst, M.W.: Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int. J. Hyperth. 30(5), 285–294 (2014).  https://doi.org/10.3109/02656736.2014.936049CrossRefGoogle Scholar
  100. 100.
    Church, J.W.: Celsion Presents Data on ThermoDox® plus Optimized RFA in Intermediate Primary Liver Cancer at the 3rd Asian Conference on Tumor Ablation (ACTA). Celsion Corporation (2016)Google Scholar
  101. 101.
    Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., Levy, L.: Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8(9), 1167–1181 (2012).  https://doi.org/10.2217/fon.12.96CrossRefGoogle Scholar
  102. 102.
    Bonvalot, S., Le Pechoux, C., De Baere, T., Buy, X., Italiano, A., Stockle, E., Terrier, P., Lassau, N., Le Cesne, A., Sargos, P., Antoine, M., Lezghed, N., Azzouz, F., Goberna, A., Levy, L., Elsa, B., Dimitriu, M., Soria, J.-C., Deutsch, E.: Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS). ASCO Meeting Abstracts. 32. (15_suppl, 10563 (2014)Google Scholar
  103. 103.
    Larsen, J.E., Henriksen, J.R., Bæksted, M., Andresen, T.L., Jacobsen, G.K., Jørgensen, K.: Liposome-based drug delivery using secretory phospholipase A2 as a tumor-specific release mechanism: preclinical evaluation of efficacy, pharmacokinetics, and individual patient expression profiles. Clin. Cancer Res. 12(19 Supplement), B24 (2014)Google Scholar
  104. 104.
    Cai, W., Chen, X.: Nanoplatforms for targeted molecular imaging in living subjects. Small. 3(11), 1840–1854 (2007).  https://doi.org/10.1002/smll.200700351CrossRefGoogle Scholar
  105. 105.
    Radu, C.G., Shu, C.J., Nair-Gill, E., Shelly, S.M., Barrio, J.R., Satyamurthy, N., Phelps, M.E., Witte, O.N.: Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2′-deoxycytidine analog. Nat. Med. 14(7), 783–788 (2008).  https://doi.org/10.1038/nm1724CrossRefGoogle Scholar
  106. 106.
    Schwarzenberg, J., Radu, C.G., Benz, M., Fueger, B., Tran, A.Q., Phelps, M.E., Witte, O.N., Satyamurthy, N., Czernin, J., Schiepers, C.: Human biodistribution and radiation dosimetry of novel PET probes targeting the deoxyribonucleoside salvage pathway. Eur. J. Nucl. Med. Mol. Imaging. 38(4), 711–721 (2011).  https://doi.org/10.1007/s00259-010-1666-zCrossRefGoogle Scholar
  107. 107.
    Wang, Y.X.: Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1(1), 35–40 (2011).  https://doi.org/10.3978/j.issn.2223-4292.2011.08.03CrossRefGoogle Scholar
  108. 108.
    Perazella, M.A.: Gadolinium-contrast toxicity in patients with kidney disease: nephrotoxicity and nephrogenic systemic fibrosis. Curr. Drug Saf. 3(1), 67–75 (2008)CrossRefGoogle Scholar
  109. 109.
    Debbage, P., Jaschke, W.: Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem. Cell Biol. 130(5), 845–875 (2008)CrossRefGoogle Scholar
  110. 110.
    Hahn, M., Singh, A., Sharma, P.: Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal. Bioanal. Chem. 399(1), 3–27 (2011)CrossRefGoogle Scholar
  111. 111.
    Garner, A., Colin, R.: Less is more: the human microdosing concept. Drug Discov. Today. 10(7), 1359–6446 (2005)CrossRefGoogle Scholar
  112. 112.
    A report from Grand View Research Inc.: Nanomedicine market projected to reach $344 billion by 2024 (2016)Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Abdul K. Parchur
    • 1
  • Jaidip M. Jagtap
    • 1
  • Gayatri Sharma
    • 1
  • Venkateswara Gogineni
    • 1
  • Sarah B. White
    • 1
    Email author
  • Amit Joshi
    • 1
    Email author
  1. 1.Departments of Biomedical Engineering & RadiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations