Image-Guided Drug Delivery

  • Camila Gadens Zamboni
  • Keyvan Farahani
  • Jordan J. GreenEmail author
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)


From intraoperative guidance to remote drug release, the term image-guided drug delivery (IGDD) broadly refers to the utilization of imaging techniques to facilitate drug therapy. With the emerging advances in nanotechnology, the concept of IGDD has increasingly become associated with co-delivery of therapeutic and diagnostic elements incorporated into nanoscale carriers. These carriers, named theranostic nanoplatforms, are of special interest in the oncology field and have been studied in a broad range of applications, such as evaluation of therapeutic response, assessment of pharmacokinetics and biodistribution, and remote control of drug release. IGDD is also considered a promising technology for precision medicine, with the potential to promote individualized diagnosis and therapy for cancer patients on the basis of biomarker’s expression. The suitability of a nanoplatform for an application drives the engineering decisions behind the carrier’s characteristics, signaling agent and matching imaging modality. Herein, IGDD is discussed in the context of preclinical and clinical applications of theranostic nanoplatforms, highlighting molecular imaging modalities and cancer targeting strategies. In this chapter we also describe broader IGDD applications beyond the use of theranostic systems.


Image-guided drug delivery Drug delivery Drug carriers Drug delivery systems Drug targeting Active targeting Biochemical markers Passive targeting Nanomedicine Theranostic nanomedicine Theranostics Nanoparticles Molecular imaging Magnetic resonance imaging Radionuclide imaging Optical imaging Ultrasonography Multimodal imaging Biodistribution Controlled release Monitoring therapeutic response Treatment efficacy Image-guided surgery Biomedical research Animal research Clinical trials Clinical efficacy Gene therapy Liposomes Polymer Cancer 


  1. 1.
    Lanza, G.M., Moonen, C., Baker, J.R., et al.: Assessing the barriers to image-guided drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6(1), 1–14 (2014)CrossRefGoogle Scholar
  2. 2.
    Tandon, P., Farahani, K.: NCI image-guided drug delivery summit. Cancer Res. 71(2), 314–317 (2011)CrossRefGoogle Scholar
  3. 3.
    Lammers, T., Kiessling, F., Hennink, W.E., et al.: Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7(6), 1899–1912 (2010)CrossRefGoogle Scholar
  4. 4.
    Ojha, T., Rizzo, L., Storm, G., et al.: Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin. Drug Deliv. 12(8), 1203–1207 (2015)CrossRefGoogle Scholar
  5. 5.
    Perrault, S.D., Walkey, C., Jennings, T., et al.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009)CrossRefGoogle Scholar
  6. 6.
    Dreher, M.R., Liu, W., Michelich, C.R., et al.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98(5), 335–344 (2006)CrossRefGoogle Scholar
  7. 7.
    Vinogradov, S.V., Bronich, T.K., Kabanov, A.V.: Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 54(1), 135–147 (2002)CrossRefGoogle Scholar
  8. 8.
    Petros, R.A., DeSimone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9(8), 615–627 (2010)CrossRefGoogle Scholar
  9. 9.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)Google Scholar
  10. 10.
    Arias, J.L.: Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin. Drug Deliv. 8(12), 1589–1608 (2011)CrossRefGoogle Scholar
  11. 11.
    Mishra, P., Nayak, B., Dey, R.K.: PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci. 11(3), 337–348 (2016)CrossRefGoogle Scholar
  12. 12.
    Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387–6392 (1986)Google Scholar
  13. 13.
    Maeda, H., Wu, J., Sawa, T., et al.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release. 65(1), 271–284 (2000)CrossRefGoogle Scholar
  14. 14.
    Yu, M.K., Park, J., Jon, S.: Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2(1), 3–44 (2012)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Su, W., Liu, Z., et al.: CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials. 33(20), 5107–5114 (2012)CrossRefGoogle Scholar
  16. 16.
    Hadjipanayis, C.G., Machaidze, R., Kaluzova, M., et al.: EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70(15), 6303–6312 (2010)CrossRefGoogle Scholar
  17. 17.
    Chen, F., Hong, H., Zhang, Y., et al.: In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 7(10), 9027–9039 (2013)CrossRefGoogle Scholar
  18. 18.
    Lowery, A., Onishko, H., Hallahan, D.E., et al.: Tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors. J. Control. Release. 150(1), 117–124 (2011)CrossRefGoogle Scholar
  19. 19.
    Vu-Quang, H., Vinding, M.S., Nielsen, T., et al.: Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared and 19 F magnetic resonance imaging modalities. Nanomedicine. 12(7), 1873–1884 (2016)CrossRefGoogle Scholar
  20. 20.
    Yu, M.K., Kim, D., Lee, I.H., et al.: Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 7(15), 2241–2249 (2011)CrossRefGoogle Scholar
  21. 21.
    James, M.L., Gambhir, S.S.: A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92(2), 897–965 (2012)CrossRefGoogle Scholar
  22. 22.
    Mankoff, D.A.: A definition of molecular imaging. J. Nucl. Med. 48(6), 18N–21N (2007)Google Scholar
  23. 23.
    Li, S., Goins, B., Zhang, L., et al.: Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug. Chem. 23(6), 1322–1332 (2012)CrossRefGoogle Scholar
  24. 24.
    Taratula, O., Schumann, C., Naleway, M.A., et al.: A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol. Pharm. 10(10), 3946–3958 (2013)CrossRefGoogle Scholar
  25. 25.
    Peng, C.L., Shih, Y.H., Lee, P.C., et al.: Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano. 5(7), 5594–5607 (2011)CrossRefGoogle Scholar
  26. 26.
    Yang, X., Hong, H., Grailer, J.J., et al.: cRGD-functionalized, DOX-conjugated, and 64 Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials. 32(17), 4151–4160 (2011)CrossRefGoogle Scholar
  27. 27.
    Willmann, J.K., van Bruggen, N., Dinkelborg, L.M., et al.: Molecular imaging in drug development. Nat. Rev. Drug Discov. 7(7), 591–607 (2008)CrossRefGoogle Scholar
  28. 28.
    Weissleder, R., Pittet, M.J.: Imaging in the era of molecular oncology. Nature. 452(7187), 580–589 (2008)CrossRefGoogle Scholar
  29. 29.
    Rudin, M., Weissleder, R.: Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2(2), 123–131 (2003)CrossRefGoogle Scholar
  30. 30.
    Pysz, M.A., Gambhir, S.S., Willmann, J.K.: Molecular imaging: current status and emerging strategies. Clin. Radiol. 65(7), 500–516 (2010)CrossRefGoogle Scholar
  31. 31.
    Cassidy, P.J., Radda, G.K.: Molecular imaging perspectives. J. R. Soc. Interface. 2(3), 133–144 (2005)CrossRefGoogle Scholar
  32. 32.
    Chen, Y., Lian, G., Liao, C., et al.: Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J. Gastroenterol. 48(7), 809–821 (2013)CrossRefGoogle Scholar
  33. 33.
    McQuade, C., Al Zaki, A., Desai, Y., et al.: A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small. 11(7), 834–843 (2015)CrossRefGoogle Scholar
  34. 34.
    Liu, D., Wu, W., Chen, X., et al.: Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale. 4(7), 2306–2310 (2012)CrossRefGoogle Scholar
  35. 35.
    Lee, G.Y., Qian, W.P., Wang, L., et al.: Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 7(3), 2078–2089 (2013)CrossRefGoogle Scholar
  36. 36.
    Kaittanis, C., Shaffer, T.M., Ogirala, A., et al.: Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 5, 3384 (2014)CrossRefGoogle Scholar
  37. 37.
    Ponce, A.M., Viglianti, B.L., Yu, D., et al.: Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J. Natl. Cancer Inst. 99(1), 53–63 (2007)CrossRefGoogle Scholar
  38. 38.
    Mouli, S.K., Tyler, P., McDevitt, J.L., et al.: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors. ACS Nano. 7(9), 7724–7733 (2013)CrossRefGoogle Scholar
  39. 39.
    Zhang, R., Luo, K., Yang, J., et al.: Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release. 166(1), 66–74 (2013)CrossRefGoogle Scholar
  40. 40.
    Wu, W., Li, R., Bian, X., et al.: Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano. 3(9), 2740–2750 (2009)CrossRefGoogle Scholar
  41. 41.
    Lu, P.L., Chen, Y.C., Ou, T.W., et al.: Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 32(8), 2213–2221 (2011)CrossRefGoogle Scholar
  42. 42.
    Soundararajan, A., Bao, A., Phillips, W.T., et al.: [186 Re] Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl. Med. Biol. 36(5), 515–524 (2009)CrossRefGoogle Scholar
  43. 43.
    You, J., Zhang, R., Xiong, C., et al.: Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72(18), 4777–4786 (2012)CrossRefGoogle Scholar
  44. 44.
    Xiao, Y., Hong, H., Javadi, A., et al.: Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials. 33(11), 3071–3082 (2012)CrossRefGoogle Scholar
  45. 45.
    Xiao, Y., Hong, H., Matson, V.Z., et al.: Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics. 2(8), 757–768 (2012)CrossRefGoogle Scholar
  46. 46.
    Zhou, J., Patel, T.R., Sirianni, R.W., et al.: Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc. Natl. Acad. Sci. U. S. A. 110(29), 11751–11756 (2013)CrossRefGoogle Scholar
  47. 47.
    David, S., Carmoy, N., Resnier, P., et al.: In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int. J. Pharm. 423(1), 108–115 (2012)CrossRefGoogle Scholar
  48. 48.
    Kim, S.H., Jeong, J.H., Lee, S.H., et al.: Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release. 129(2), 107–116 (2008)CrossRefGoogle Scholar
  49. 49.
    Mieszawska, A.J., Kim, Y., Gianella, A., et al.: Synthesis of polymer–lipid nanoparticles for image-guided delivery of dual modality therapy. Bioconjug. Chem. 24(9), 1429–1434 (2013)CrossRefGoogle Scholar
  50. 50.
    Zhao, P., Zheng, M., Luo, Z., et al.: NIR-driven smart theranostic nanomedicine for on-demand drug release and synergistic antitumour therapy. Sci. Rep. 5, 14258 (2015)CrossRefGoogle Scholar
  51. 51.
    Wu, X., Sun, X., Guo, Z., et al.: In vivo and in situ tracking cancer chemotherapy by highly photostable NIR fluorescent theranostic prodrug. J. Am. Chem. Soc. 136(9), 3579–3588 (2014)CrossRefGoogle Scholar
  52. 52.
    Mangraviti, A., Tzeng, S.Y., Kozielski, K.L., et al.: Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo. ACS Nano. 9(2), 1236–1249 (2015)CrossRefGoogle Scholar
  53. 53.
    Feng, B., Xu, Z., Zhou, F., et al.: Near infrared light-actuated gold nanorods with cisplatin–polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale. 7(36), 14854–14864 (2015)CrossRefGoogle Scholar
  54. 54.
    Min, H.S., You, D.G., Son, S., et al.: Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics. 5(12), 1402–1418 (2015)CrossRefGoogle Scholar
  55. 55.
    Wang, X., Chen, H., Zhang, K., et al.: An intelligent nanotheranostic agent for targeting, redox-responsive ultrasound imaging, and imaging-guided high-intensity focused ultrasound synergistic therapy. Small. 10(7), 1403–1411 (2014)CrossRefGoogle Scholar
  56. 56.
    Zhou, H., Qian, W., Uckun, F.M., et al.: IGF1 receptor targeted theranostic nanoparticles for targeted and image-guided therapy of pancreatic cancer. ACS Nano. 9(8), 7976–7991 (2015)CrossRefGoogle Scholar
  57. 57.
    Hu, S.H., Liao, B.J., Chiang, C.S., et al.: Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv. Mater. 24(27), 3627–3632 (2012)CrossRefGoogle Scholar
  58. 58.
    Li, Z., Wang, C., Cheng, L., et al.: PEG-functionalized iron oxide nanoclusters loaded with chlorin e6 for targeted, NIR light induced, photodynamic therapy. Biomaterials. 34(36), 9160–9170 (2013)CrossRefGoogle Scholar
  59. 59.
    de Smet, M., Langereis, S., van den Bosch, S., et al.: SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J. Control. Release. 169(1), 82–90 (2013)CrossRefGoogle Scholar
  60. 60.
    Fan, C.H., Ting, C.Y., Lin, H.J., et al.: SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 34(14), 3706–3715 (2013)CrossRefGoogle Scholar
  61. 61.
    Li, W.P., Su, C.H., Chang, Y.C., et al.: Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano. 10(2), 2017–2027 (2016)CrossRefGoogle Scholar
  62. 62.
    Rapoport, N., Nam, K.H., Gupta, R., et al.: Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release. 153(1), 4–15 (2011)CrossRefGoogle Scholar
  63. 63.
    Hendee, W.R., Morgan, C.J.: Magnetic resonance imaging part I—physical principles. West. J. Med. 141(4), 491–500 (1984)Google Scholar
  64. 64.
    Dale, B.M., Brown, M.A., Semelka, R.C.: MRI: Basic Principles and Applications, 5th edn. John Wiley & Sons, Hoboken (2015)CrossRefGoogle Scholar
  65. 65.
    Axel, L.: Relaxation times and NMR signals. Magn. Reson. Imaging. 2(2), 121–128 (1984)CrossRefGoogle Scholar
  66. 66.
    Pykett, I.L., Newhouse, J.H., Buonanno, F.S., et al.: Principles of nuclear magnetic resonance imaging. Radiology. 143(1), 157–168 (1982)CrossRefGoogle Scholar
  67. 67.
    Shokrollahi, H.: Contrast agents for MRI. Mater. Sci. Eng. C Mater. Biol. Appl. 33(8), 4485–4497 (2013)CrossRefGoogle Scholar
  68. 68.
    Burtea, C., Laurent, S., Vander Elst, L., et al.: Contrast agents: magnetic resonance. In: Semmler, W., Schwaiger, M. (eds.) Molecular imaging I, pp. 135–165. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  69. 69.
    Buxton, R.B.: Introduction to functional magnetic resonance imaging: principles and techniques, 2nd edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  70. 70.
    Kirsch, J.K.: Basic principles of magnetic resonance contrast agents. Top. Magn. Reson. Imaging. 3(2), 1–18 (1991)CrossRefGoogle Scholar
  71. 71.
    Na, H.B., Song, I.C., Hyeon, T.: Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21(21), 2133–2148 (2009)CrossRefGoogle Scholar
  72. 72.
    Jun, Y.W., Lee, J.H., Cheon, J.: Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. Engl. 47(28), 5122–5135 (2008)CrossRefGoogle Scholar
  73. 73.
    Yu, M.K., Park, J., Jon, S.: Magnetic nanoparticles and their applications in image-guided drug delivery. Drug Deliv. Transl. Res. 2(1), 3–21 (2012)CrossRefGoogle Scholar
  74. 74.
    Talelli, M., Rijcken, C.J.F., Lammers, T., et al.: Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir. 25(4), 2060–2067 (2009)CrossRefGoogle Scholar
  75. 75.
    Maenosono, S., Suzuki, T., Saita, S.: Superparamagnetic FePt nanoparticles as excellent MRI contrast agents. J. Magn. Magn. Mater. 320(9), L79–L83 (2008)CrossRefGoogle Scholar
  76. 76.
    Lee, J.H., Huh, Y.M., Jun, Y.W., et al.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13(1), 95–99 (2007)CrossRefGoogle Scholar
  77. 77.
    Tanaka, M., Nakashima, O., Wada, Y., et al.: Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver. Hepatology. 24(4), 807–812 (1996)CrossRefGoogle Scholar
  78. 78.
    Wang, Y.X.: Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 21(47), 13400–13402 (2015)CrossRefGoogle Scholar
  79. 79.
    Anselmo, A.C., Mitragotri, S.: Nanoparticles in the clinic. Bioeng. Transl. Med. 1(1), 10–29 (2016)Google Scholar
  80. 80.
    Yang, K., Yang, G., Chen, L., et al.: FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials. 38, 1–9 (2015)CrossRefGoogle Scholar
  81. 81.
    Tyler, D.J., Robson, M.D., Henkelman, R.M., et al.: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J. Magn. Reson. Imaging. 25(2), 279–289 (2007)CrossRefGoogle Scholar
  82. 82.
    Zhang, L., Zhong, X., Wang, L., et al.: T1-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles. J. Magn. Reson. Imaging. 33(1), 194–202 (2011)CrossRefGoogle Scholar
  83. 83.
    Coleman, R.E.: Single photon emission computed tomography and positron emission tomography in cancer imaging. Cancer. 67(S4), 1261–1270 (1991)CrossRefGoogle Scholar
  84. 84.
    Liao, A.H., Wu, S.Y., Wang, H.E., et al.: Evaluation of 18 F-labeled targeted perfluorocarbon-filled albumin microbubbles as a probe for microUS and microPET in tumor-bearing mice. Ultrasonics. 53(2), 320–327 (2013)CrossRefGoogle Scholar
  85. 85.
    Almuhaideb, A., Papathanasiou, N., Bomanji, J.: 18F-FDG PET/CT imaging in oncology. Ann. Saudi Med. 31(1), 3–13 (2011)CrossRefGoogle Scholar
  86. 86.
    Welsh, J.S.: Beta radiation. Oncologist. 11(2), 181–183 (2006)CrossRefGoogle Scholar
  87. 87.
    Zanzonico, P.: Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems. Radiat. Res. 177(4), 349–364 (2012)CrossRefGoogle Scholar
  88. 88.
    Smith, N.B., Webb, A.: Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  89. 89.
    Hicks, R.J., Hofman, M.S.: Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat. Rev. Clin. Oncol. 9(12), 712–720 (2012)CrossRefGoogle Scholar
  90. 90.
    Patil, R.R., Yu, J., Banerjee, S.R., et al.: Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol. Ther. 19(9), 1626–1635 (2011)CrossRefGoogle Scholar
  91. 91.
    Livieratos, L.: Basic Principles of SPECT and PET Imaging. In: Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds.) Radionuclide and Hybrid Bone Imaging, pp. 345–359. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  92. 92.
    Jaszczak, R.J., Coleman, R.E.: Single Photon Emission Computed Tomography (SPECT) Principles and Instrumentation. Investig. Radiol. 20(9), 897–910 (1985)CrossRefGoogle Scholar
  93. 93.
    Van Audenhaege, K., Van Holen, R., Vandenberghe, S., et al.: Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med. Phys. 42(8), 4796–4813 (2015)CrossRefGoogle Scholar
  94. 94.
    Turkington, T.G., Coleman, R.E.: Clinical oncologic positron emission tomography: an introduction. Semin. Roentgenol. 37(2), 102–109 (2002)CrossRefGoogle Scholar
  95. 95.
    Rahmim, A., Zaidi, H.: PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29(3), 193–207 (2008)CrossRefGoogle Scholar
  96. 96.
    Weissleder, R., Ntziachristos, V.: Shedding light onto live molecular targets. Nat. Med. 9(1), 123–128 (2003)CrossRefGoogle Scholar
  97. 97.
    Mourant, J.R., Freyer, J.P., Hielscher, A.H., et al.: Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37(16), 3586–3593 (1998)CrossRefGoogle Scholar
  98. 98.
    Tuchin, V.V.: Light scattering study of tissues. Physics-Uspekhi. 40(5), 495–515 (1997)CrossRefGoogle Scholar
  99. 99.
    Beauvoit, B., Chance, B.: Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions. In: Saks, V.A., et al. (eds.) Bioenergetics of the Cell: Quantitative Aspects, pp. 445–455. Springer, New York (1998)CrossRefGoogle Scholar
  100. 100.
    Haringsma, J., Tytgat, G.N.J.: Fluorescence and autofluorescence. Best Pract. Res. Clin. Gastroenterol. 13(1), 1–10 (1999)CrossRefGoogle Scholar
  101. 101.
    Zonios, G., Bykowski, J., Kollias, N.: Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Invest. Dermatol. 117(6), 1452–1457 (2001)CrossRefGoogle Scholar
  102. 102.
    Rich, R.M., Stankowska, D.L., Maliwal, B.P., et al.: Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal. Bioanal. Chem. 405(6), 2065–2075 (2013)CrossRefGoogle Scholar
  103. 103.
    Wang, R.K.: Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues. Phys. Med. Biol. 47(13), 2281–2299 (2002)CrossRefGoogle Scholar
  104. 104.
    Knappe, V., Frank, F., Rohde, E.: Principles of lasers and biophotonic effects. Photomed. Laser Surg. 22(5), 411–417 (2004)CrossRefGoogle Scholar
  105. 105.
    Zhou, F., Xing, D., Ou, Z., et al.: Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14(2), 021009 (2009)CrossRefGoogle Scholar
  106. 106.
    Ward, W.W.: Energy transfer processes in bioluminescence. In: Smith, K.C. (ed.) Photochemical and Photobiological Reviews, pp. 1–57. Springer, New York (1979)Google Scholar
  107. 107.
    Pittet, M.J., Weissleder, R.: Intravital imaging. Cell. 147(5), 983–991 (2011)CrossRefGoogle Scholar
  108. 108.
    Amornphimoltham, P., Masedunskas, A., Weigert, R.: Intravital microscopy as a tool to study drug delivery in preclinical studies. Adv. Drug Deliv. Rev. 63(1), 119–128 (2011)CrossRefGoogle Scholar
  109. 109.
    Kirui, D.K., Ferrari, M.: Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr. Drug Targets. 16(6), 528–541 (2015)CrossRefGoogle Scholar
  110. 110.
    Alieva, M., Ritsma, L., Giedt, R.J., et al.: Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital. 3(2), e29917 (2014)CrossRefGoogle Scholar
  111. 111.
    Lehr, H.A., Leunig, M., Menger, M.D., et al.: Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am. J. Pathol. 143(4), 1055–1062 (1993)Google Scholar
  112. 112.
    Kienast, Y., Von Baumgarten, L., Fuhrmann, M., et al.: Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16(1), 116–122 (2010)CrossRefGoogle Scholar
  113. 113.
    Stuker, F., Ripoll, J., Rudin, M.: Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics. 3(2), 229–274 (2011)CrossRefGoogle Scholar
  114. 114.
    Ntziachristos, V., Ripoll, J., Wang, L.V., et al.: Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23(3), 313–320 (2005)CrossRefGoogle Scholar
  115. 115.
    Vonwil, D., Christensen, J., Fischer, S., et al.: Validation of fluorescence molecular tomography/micro-CT multimodal imaging in vivo in rats. Mol. Imaging Biol. 16(3), 350–361 (2014)CrossRefGoogle Scholar
  116. 116.
    Nahrendorf, M., Waterman, P., Thurber, G., et al.: Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler. Thromb. Vasc. Biol. 29(10), 1444–1451 (2009)CrossRefGoogle Scholar
  117. 117.
    Ale, A., Ermolayev, V., Herzog, E., et al.: FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods. 9(6), 615–620 (2012)CrossRefGoogle Scholar
  118. 118.
    Ponta, H., Sherman, L., Herrlich, P.A.: CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4(1), 33–45 (2003)CrossRefGoogle Scholar
  119. 119.
    Ziskin, M.C.: Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 13(3), 705–709 (1993)CrossRefGoogle Scholar
  120. 120.
    Chan, V., Perlas, A.: Basics of ultrasound imaging. In: Narouze, S.N. (ed.) Atlas of Ultrasound-Guided Procedures in Interventional Pain Management, pp. 13–19. Springer, New York (2011)CrossRefGoogle Scholar
  121. 121.
    Cootney, R.W.: Ultrasound imaging: principles and applications in rodent research. ILAR J. 42(3), 233–247 (2001)CrossRefGoogle Scholar
  122. 122.
    Otto, C.M.: Principles of echocardiographic image acquisition and Doppler analysis. In: Otto, C.M. (ed.) Textbook of Clinical Echocardiography, 5th edn, pp. 1–30. WB Saunders, Philadelphia (2000)Google Scholar
  123. 123.
    Sirsi, S.R., Borden, M.A.: Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1(1–2), 3–17 (2009)CrossRefGoogle Scholar
  124. 124.
    Unnikrishnan, S., Klibanov, A.L.: Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR Am. J. Roentgenol. 199(2), 292–299 (2012)CrossRefGoogle Scholar
  125. 125.
    Ferrara, K., Pollard, R., Borden, M.: Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007)CrossRefGoogle Scholar
  126. 126.
    Hernot, S., Klibanov, A.L.: Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 60(10), 1153–1166 (2008)CrossRefGoogle Scholar
  127. 127.
    Airan, R.D., Meyer, R.A., Ellens, N.P.K., et al.: Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17(2), 652–659 (2017)CrossRefGoogle Scholar
  128. 128.
    Borden, M.A., Qin, S., Ferrara, K.W.: Ultrasound contrast agents. In: Weissleder, R., Ross, B.D., Rehemtulla, A., Gambhir, S.S. (eds.) Molecular Imaging: Principles and Practice, pp. 425–444. PMPH-USA, Shelton (2010)Google Scholar
  129. 129.
    Rapoport, N.: Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4(5), 492–510 (2012)CrossRefGoogle Scholar
  130. 130.
    Kinoshita, M., McDannold, N., Jolesz, F.A., et al.: Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc. Natl. Acad. Sci. U. S. A. 103(31), 11719–11723 (2006)CrossRefGoogle Scholar
  131. 131.
    Meairs, S.: Facilitation of drug transport across the blood–brain barrier with ultrasound and microbubbles. Pharmaceutics. 7(3), 275–293 (2015)CrossRefGoogle Scholar
  132. 132.
    Mesiwala, A.H., Farrell, L., Wenzel, H.J., et al.: High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med. Biol. 28(3), 389–400 (2002)CrossRefGoogle Scholar
  133. 133.
    Park, E.J., Zhang, Y.Z., Vykhodtseva, N., et al.: Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J. Control. Release. 163(3), 277–284 (2012)CrossRefGoogle Scholar
  134. 134.
    Huang, S.L., Hamilton, A.J., Nagaraj, A., et al.: Improving ultrasound reflectivity and stability of echogenic liposomal dispersions for use as targeted ultrasound contrast agents. J. Pharm. Sci. 90(12), 1917–1926 (2001)CrossRefGoogle Scholar
  135. 135.
    Alkan-Onyuksel, H., Demos, S.M., Lanza, G.M., et al.: Development of inherently echogenic liposomes as an ultrasonic contrast agent. J. Pharm. Sci. 85(5), 486–490 (1996)CrossRefGoogle Scholar
  136. 136.
    Demos, S.M., Önyüsel, H., Gilbert, J., et al.: In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement. J. Pharm. Sci. 86(2), 167–171 (1997)CrossRefGoogle Scholar
  137. 137.
    Negishi, Y., Yamane, M., Kurihara, N., et al.: Enhancement of blood–brain barrier permeability and delivery of antisense oligonucleotides or plasmid DNA to the brain by the combination of Bubble liposomes and high-intensity focused ultrasound. Pharmaceutics. 7(3), 344–362 (2015)CrossRefGoogle Scholar
  138. 138.
    Liu, J., Levine, A.L., Mattoon, J.S., et al.: Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol. 51(9), 2179–2189 (2006)CrossRefGoogle Scholar
  139. 139.
    Ophir, J., Gobuty, A., McWhirt, R.E., et al.: Ultrasonic backscatter from contrast producing collagen microspheres. Ultrason. Imaging. 2(1), 67–77 (1980)CrossRefGoogle Scholar
  140. 140.
    Parker, K.J., Tuthill, T.A., Lerner, R.M., et al.: A particulate contrast agent with potential for ultrasound imaging of liver. Ultrasound Med. Biol. 13(9), 555–566 (1987)CrossRefGoogle Scholar
  141. 141.
    Paoli, E.E., Kruse, D.E., Seo, J.W., et al.: An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: importance of formulation. J. Control. Release. 143(1), 13–22 (2010)CrossRefGoogle Scholar
  142. 142.
    Koukourakis, M.I., Koukouraki, S., Fezoulidis, I., et al.: High intratumoural accumulation of stealth® liposomal doxorubicin (Caelyx®) in glioblastomas and in metastatic brain tumours. Br. J. Cancer. 83(10), 1281–1286 (2000)CrossRefGoogle Scholar
  143. 143.
    Koukourakis, M.I., Koukouraki, S., Giatromanolaki, A., et al.: High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: rationale for combination with radiotherapy. Acta Oncol. 39(2), 207–211 (2000)CrossRefGoogle Scholar
  144. 144.
    Seymour, L.W., Ferry, D.R., Anderson, D., et al.: Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol. 20(6), 1668–1676 (2002)CrossRefGoogle Scholar
  145. 145.
    Collins, J.M.: Pharmacologic rationale for regional drug delivery. J. Clin. Oncol. 2(5), 498–504 (1984)CrossRefGoogle Scholar
  146. 146.
    Zamboni, C.G., Green, J.J., Higgins, L.J.: Local delivery of gene-based therapy for hepatocellular carcinoma: the TACE of the future? Intervent. Oncol. 360. 3(11), E121–E136 (2015)Google Scholar
  147. 147.
    Bierman, H.R., Byron, R.L., Kelley, K.H., et al.: Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo. J. Natl. Cancer Inst. 12(1), 107–131 (1951)Google Scholar
  148. 148.
    Breedis, C., Young, G.: The blood supply of neoplasms in the liver. Am. J. Pathol. 30(5), 969–977 (1954)Google Scholar
  149. 149.
    Vogl, T.J., Naguib, N.N., Nour-Eldin, N.E., et al.: Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur. J. Radiol. 72(3), 505–516 (2009)CrossRefGoogle Scholar
  150. 150.
    Van Ha, T.G.: Transarterial chemoembolization for hepatocellular carcinoma. Semin Intervent. Radiol. 26(3), 270–275 (2009)CrossRefGoogle Scholar
  151. 151.
    Vogelbaum, M.A., Aghi, M.K.: Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 17(S2), ii3–ii8 (2015)CrossRefGoogle Scholar
  152. 152.
    Healy, A.T., Vogelbaum, M.A.: Convection-enhanced drug delivery for gliomas. Surg. Neurol. Int. 6(S1), S59–S67 (2014)Google Scholar
  153. 153.
    Roth, J., Beni-Adani, L., Biyani, N., et al.: Classical and real-time neuronavigation in pediatric neurosurgery. Childs Nerv. Syst. 22(9), 1065–1071 (2006)CrossRefGoogle Scholar
  154. 154.
    Mavrogenis, A.F., Savvidou, O.D., Mimidis, G., et al.: Computer-assisted navigation in orthopedic surgery. Orthopedics. 36(8), 631–642 (2013)CrossRefGoogle Scholar
  155. 155.
    Hinsche, A.F., Smith, R.M.: Image-guided surgery. Curr. Orthop. 15(4), 296–303 (2001)CrossRefGoogle Scholar
  156. 156.
    Widmann, G., Schullian, P., Ortler, M., et al.: Frameless stereotactic targeting devices: technical features, targeting errors and clinical results. Int. J. Med. Robot. 8(1), 1–16 (2012)CrossRefGoogle Scholar
  157. 157.
    Enchev, Y.: Neuronavigation: geneology, reality, and prospects. Neurosurg. Focus. 27(3), E11 (2009)CrossRefGoogle Scholar
  158. 158.
    Bulent Omay, S., Vogelbaum, M.A.: Stereotactic brain biopsy. In: Mehta, M.P., Chang, S.M., Guha, A., Newton, H.B., Vogelbaum, M.A. (eds.) Principles and Practice of Neuro-Oncology: A Multidisciplinary Approach, pp. 400–406. Demos Medical Publishing, New York (2010)Google Scholar
  159. 159.
    Goldsmith, M.M.: Image-guided systems in neurotology/skull base surgery. In: Gulya, A.J., Minor, L.B., Poe, D. (eds.) Glasscock-Shambaugh Surgery of the Ear, 6th edn, pp. 369–376. PMPH-USA, Shelton (2010)Google Scholar
  160. 160.
    Roberts, D.W., Strohbehn, J.W., Hatch, J.F., et al.: A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 65(4), 545–549 (1986)CrossRefGoogle Scholar
  161. 161.
    Mezger, U., Jendrewski, C., Bartels, M.: Navigation in surgery. Langenbecks Arch. Surg. 398(4), 501–514 (2013)CrossRefGoogle Scholar
  162. 162.
    Orringer, D.A., Golby, A., Jolesz, F.: Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev. Med. Devices. 9(5), 491–500 (2012)CrossRefGoogle Scholar
  163. 163.
    Roberts, D.W., Hartov, A., Kennedy, F.E., et al.: Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery. 43(4), 749–758 (1998)CrossRefGoogle Scholar
  164. 164.
    Nimsky, C., Ganslandt, O., Cerny, S., et al.: Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 47(5), 1070–1080 (2000)CrossRefGoogle Scholar
  165. 165.
    Belykh, E., Martirosyan, N.L., Yagmurlu, K., et al.: Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front. Surg. 3, 55 (2016)CrossRefGoogle Scholar
  166. 166.
    Stummer, W., Reulen, H.J., Meinel, T., et al.: Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 62(3), 564–576 (2008)CrossRefGoogle Scholar
  167. 167.
    Stummer, W., Pichlmeier, U., Meinel, T., et al.: Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 7(5), 392–401 (2006)CrossRefGoogle Scholar
  168. 168.
    Barone, D.G., Lawrie, T.A., Hart, M.G.: Image guided surgery for the resection of brain tumours. Cochrane Database Syst. Rev. 1, CD009685 (2014)Google Scholar
  169. 169.
    Haque, R., Contreras, R., McNicoll, M.P., et al.: Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord. 6(1), 2 (2006)CrossRefGoogle Scholar
  170. 170.
    Meric, F., Mirza, N.Q., Vlastos, G., et al.: Positive surgical margins and ipsilateral breast tumor recurrence predict disease-specific survival after breast-conserving therapy. Cancer. 97(4), 926–933 (2003)CrossRefGoogle Scholar
  171. 171.
    Nagtegaal, I.D., Quirke, P.: What is the role for the circumferential margin in the modern treatment of rectal cancer? J. Clin. Oncol. 26(2), 303–312 (2008)CrossRefGoogle Scholar
  172. 172.
    Dotan, Z.A., Kavanagh, K., Yossepowitch, O., et al.: Positive surgical margins in soft tissue following radical cystectomy for bladder cancer and cancer specific survival. J. Urol. 178(6), 2308–2313 (2007)CrossRefGoogle Scholar
  173. 173.
    Wieder, J.A., Soloway, M.S.: Incidence, etiology, location, prevention and treatment of positive surgical margins after radical prostatectomy for prostate cancer. J. Urol. 160(2), 299–315 (1998)CrossRefGoogle Scholar
  174. 174.
    Snijder, R.J., de la Rivière, A.B., Elbers, H.J.J., et al.: Survival in resected stage I lung cancer with residual tumor at the bronchial resection margin. Ann. Thorac. Surg. 65(1), 212–216 (1998)CrossRefGoogle Scholar
  175. 175.
    Mallidi, S., Spring, B.Q., Hasan, T.: Optical imaging, photodynamic therapy and optically-triggered combination treatments. Cancer J. 21(3), 194–205 (2015)CrossRefGoogle Scholar
  176. 176.
    Ishizuka, M., Abe, F., Sano, Y., et al.: Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int. Immunopharmacol. 11(3), 358–365 (2011)CrossRefGoogle Scholar
  177. 177.
    Wang, W., Tabu, K., Hagiya, Y., et al.: Enhancement of 5-aminolevulinic acid-based fluorescence detection of side population-defined glioma stem cells by iron chelation. Sci. Rep. 7, 42070 (2017)CrossRefGoogle Scholar
  178. 178.
    Eljamel, M.S., Goodman, C., Moseley, H.: ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre phase III randomised controlled trial. Lasers Med. Sci. 23(4), 361–367 (2008)CrossRefGoogle Scholar
  179. 179.
    Rigual, N.R., Shafirstein, G., Frustino, J., et al.: Adjuvant intraoperative photodynamic therapy in head and neck cancer. JAMA Otolaryngol. Head Neck Surg. 139(7), 706–711 (2013)CrossRefGoogle Scholar
  180. 180.
    Bellnier, D.A., Greco, W.R., Nava, H., et al.: Mild skin photosensitivity in cancer patients following injection of Photochlor (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; HPPH) for photodynamic therapy. Cancer Chemother. Pharmacol. 57(1), 40–45 (2006)CrossRefGoogle Scholar
  181. 181.
    Bader, M.J., Stepp, H., Beyer, W., et al.: Photodynamic therapy of bladder cancer–a phase I study using hexaminolevulinate (HAL). Urol. Oncol. 31(7), 1178–1183 (2013)CrossRefGoogle Scholar
  182. 182.
    Lange, N., Jichlinski, P., Zellweger, M., et al.: Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br. J. Cancer. 80(1–2), 185–193 (1999)CrossRefGoogle Scholar
  183. 183.
    Gupta, T., Narayan, C.A.: Image-guided radiation therapy: physician’s perspectives. J. Med. Phys. 37(4), 174–182 (2012)CrossRefGoogle Scholar
  184. 184.
    Dawson, L.A., Sharpe, M.B.: Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 7(10), 848–858 (2006)CrossRefGoogle Scholar
  185. 185.
    Folkert, M.R., Timmerman, R.D.: Stereotactic ablative body radiosurgery (SABR) or stereotactic body radiation therapy (SBRT). Adv. Drug Deliv. Rev. 109, 3–14 (2016)CrossRefGoogle Scholar
  186. 186.
    Barnett, G.C., West, C.M.L., Dunning, A.M., et al.: Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat. Rev. Cancer. 9(2), 134–142 (2009)CrossRefGoogle Scholar
  187. 187.
    McMahon, S.J., Paganetti, H., Prise, K.M.: Optimising element choice for nanoparticle radiosensitisers. Nanoscale. 8(1), 581–589 (2016)CrossRefGoogle Scholar
  188. 188.
    Lux, F., Sancey, L., Bianchi, A., et al.: Gadolinium-based nanoparticles for theranostic MRI-radiosensitization. Nanomedicine (Lond.). 10(11), 1801–1815 (2015)CrossRefGoogle Scholar
  189. 189.
    McQuaid, H.N., Muir, M.F., Taggart, L.E., et al.: Imaging and radiation effects of gold nanoparticles in tumour cells. Sci. Rep. 6, 19442 (2016)CrossRefGoogle Scholar
  190. 190.
    Joh, D.Y., Kao, G.D., Murty, S., et al.: Theranostic gold nanoparticles modified for durable systemic circulation effectively and safely enhance the radiation therapy of human sarcoma cells and tumors. Transl. Oncol. 6(6), 722–731 (2013)CrossRefGoogle Scholar
  191. 191.
    Detappe, A., Thomas, E., Tibbitt, M.W., et al.: Ultrasmall silica-based bismuth gadolinium nanoparticles for dual magnetic resonance–computed tomography image guided radiation therapy. Nano Lett. 17(3), 1733–1740 (2017)CrossRefGoogle Scholar
  192. 192.
    Retif, P., Pinel, S., Toussaint, M., et al.: Nanoparticles for radiation therapy enhancement: the key parameters. Theranostics. 5(9), 1030–1044 (2015)CrossRefGoogle Scholar
  193. 193.
    Klein, S., Sommer, A., Distel, L.V.R., et al.: Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem. Biophys. Res. Commun. 425(2), 393–397 (2012)CrossRefGoogle Scholar
  194. 194.
    Emerit, J., Beaumont, C., Trivin, F.: Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 55(6), 333–339 (2001)CrossRefGoogle Scholar
  195. 195.
    Voinov, M.A., Pagán, J.O.S., Morrison, E., et al.: Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J. Am. Chem. Soc. 133(1), 35–41 (2010)CrossRefGoogle Scholar
  196. 196.
    Maharaj, A.R., Edginton, A.N.: Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst. Pharmacol. 3(11), 1–13 (2014)CrossRefGoogle Scholar
  197. 197.
    Derendorf, H., Meibohm, B.: Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm. Res. 16(2), 176–185 (1999)CrossRefGoogle Scholar
  198. 198.
    Lin, P., Chen, J.W., Chang, L.W., et al.: Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ. Sci. Technol. 42(16), 6264–6270 (2008)CrossRefGoogle Scholar
  199. 199.
    Lobo, E.D., Balthasar, J.P.: Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS J. 4(4), 212–222 (2002)CrossRefGoogle Scholar
  200. 200.
    Soininen, S.K., Vellonen, K.S., Heikkinen, A.T., et al.: Intracellular PK/PD relationships of free and liposomal doxorubicin: quantitative analyses and PK/PD modeling. Mol. Pharm. 13(4), 1358–1365 (2016)CrossRefGoogle Scholar
  201. 201.
    Eliaz, R.E., Nir, S., Marty, C., et al.: Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res. 64(2), 711–718 (2004)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Camila Gadens Zamboni
    • 1
  • Keyvan Farahani
    • 2
  • Jordan J. Green
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringTranslational Tissue Engineering Center, Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.National Cancer Institute, National Institutes of HealthRockvilleUSA

Personalised recommendations