Advertisement

Engineering Multifunctional Nanomedicine Platforms for Drug Delivery and Imaging

  • James Grant
  • Mana Naeim
  • Youngshin Lee
  • Darron Miya
  • Theodore Kee
  • Dean HoEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Due to their highly modifiable surface characteristics and favorable surface area, particles in the nano-dimension have increased the targeting efficiency of many cytotoxic drugs used for cancer treatment and have vastly improved common imaging techniques. When compared to traditional therapy, nanoparticles have shown lower rates of cytotoxicity, higher therapeutic indices, and higher biocompatibility results. Thus, nanomedicine platforms are crucial for the development of more targeted, effective, and multifunctional therapies. This chapter focuses on an overview of multifunctional nanomedicines, their architecture, and possible challenges associated with increasing functionalities. Also highlighted is the state of multifunctional nanoparticles, including liposomes, dendrimers, gold platforms, and nanodiamonds, used for cancer applications. Liposomes have transitioned into clinic as a delivery vehicle for both hydrophilic and hydrophobic drugs; dendrimers enable simultaneous loading of drugs, imaging, and targeting agents in parallel; gold nanoparticles possess several intrinsic properties that allow for improved imaging and photothermal tumor ablation when used in conjunction with other drugs, imaging, and targeting agents; and nanodiamonds can mediate targeted release of cytotoxic drugs, promote effective therapeutic transport through the host, and reduce off-target toxicity. Independent advances in each nanoplatform may enable the future development of combinatorial nanomedicine that can be globally optimized using powerful artificial intelligence platforms.

Keywords

Nanomedicine Nanotechnology Nanodiagnostic Nanoparticles Multifunctional Theranostics Nanodiamonds Gold nanoparticles Liposomes Dendrimers Targeted therapy Combinatorial Targeted nanomedicine Nanotoxicology Combination therapy Multiple drug resistance Phenotypic personalized medicine Artificial intelligence drug carriers Nanospheres Nanostructures Nanoscience Tumor imaging Diagnostic imaging Molecular imaging Drug development Drug compounding Drug conjugates EPR effect Chemotherapeutics Multifunctional nanoparticle 

References

  1. 1.
    Sahoo, S.K., Labhasetwar, V.: Nanotech approaches to drug delivery and imaging. Drug Discov. Today. 8, 1112–1120 (2003).  https://doi.org/10.1016/s1359-6446(03)02903-9CrossRefGoogle Scholar
  2. 2.
    Duncan, R., Gaspar, R.: Nanomedicine(s) under the microscope. Mol. Pharm. 8, 2101–2141 (2011).  https://doi.org/10.1021/mp200394tCrossRefGoogle Scholar
  3. 3.
    Elsayed, I., Huang, X., Elsayed, M.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).  https://doi.org/10.1016/j.canlet.2005.07.035CrossRefGoogle Scholar
  4. 4.
    Kim, J.S., Kuk, E., Yu, K.N., et al.: Antimicrobial effects of silver nanoparticles. Nanomedicine. 3, 95–101 (2007).  https://doi.org/10.1016/j.nano.2006.12.001CrossRefGoogle Scholar
  5. 5.
    Ramos-Cabrer, P., Campos, F.: Liposomes and nanotechnology in drug development: focus on neurological targets. Int. J. Nanomedicine. 8, 951–960 (2013).  https://doi.org/10.2147/ijn.s30721CrossRefGoogle Scholar
  6. 6.
    Honda, M., Asai, T., Oku, N., et al.: Liposomes and nanotechnology in drug development: focus on ocular targets. Int. J. Nanomedicine. 8, 495–503 (2013).  https://doi.org/10.2147/ijn.s30725CrossRefGoogle Scholar
  7. 7.
    Camp, E.R., Wang, C., Little, E.C., et al.: Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. 20, 222–228 (2013).  https://doi.org/10.1038/cgt.2013.9CrossRefGoogle Scholar
  8. 8.
    Samad, A., Alam, M., Saxena, K.: Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr. Pharm. Des. 15, 2958–2969 (2009).  https://doi.org/10.2174/138161209789058200CrossRefGoogle Scholar
  9. 9.
    Ho, D., Wang, C.-H.K., Chow, E.K.-H.: Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1, e1500439 (2015).  https://doi.org/10.1126/sciadv.1500439CrossRefGoogle Scholar
  10. 10.
    Wagner, V., Dullaart, A., Bock, A.-K., Zweck, A.: The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006).  https://doi.org/10.1038/nbt1006-1211CrossRefGoogle Scholar
  11. 11.
    Williams, H.D., Trevaskis, N.L., Charman, S.A., et al.: Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65, 315–499 (2013).  https://doi.org/10.1124/pr.112.005660CrossRefGoogle Scholar
  12. 12.
    Harrington, K.J., Mohammadtaghi, S., Uster, P.S., Glass, D., Peters, A.M., Vile, R.G., Stewart, J.S.W.: Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res. 7(2), 243–254 (2001)Google Scholar
  13. 13.
    Hainfeld, J.F., Slatkin, D.N., Focella, T.M., Smilowitz, H.M.: Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol. 79, 248–253 (2006).  https://doi.org/10.1259/bjr/13169882CrossRefGoogle Scholar
  14. 14.
    Louie, A.: Multimodality imaging probes: design and challenges. Chem. Rev. 110, 3146–3195 (2010).  https://doi.org/10.1021/cr9003538CrossRefGoogle Scholar
  15. 15.
    Jennings, L.E., Long, N.J.: ChemInform abstract: “two is better than one” – probes for dual-modality molecular imaging. ChemInform. 40, (2009).  https://doi.org/10.1002/chin.200941232
  16. 16.
    Li, X., Lu, W.L., Liang, G.W., et al.: Effect of stealthy liposomal topotecan plus amlodipine on the multidrug-resistant leukaemia cells in vitro and xenograft in mice. Eur. J. Clin. Investig. 36, 409–418 (2006).  https://doi.org/10.1111/j.1365-2362.2006.01643.xCrossRefGoogle Scholar
  17. 17.
    Souza, P.D., Castillo, M., Myers, C.: Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. Br. J. Cancer. 75, 1593–1600 (1997).  https://doi.org/10.1038/bjc.1997.272CrossRefGoogle Scholar
  18. 18.
    Resnik, D.B., Tinkle, S.S.: Ethics in nanomedicine. Nanomedicine. 2, 345–350 (2007).  https://doi.org/10.2217/17435889.2.3.345CrossRefGoogle Scholar
  19. 19.
    Sanvicens, N., Marco, M.P.: Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol. 26, 425–433 (2008).  https://doi.org/10.1016/j.tibtech.2008.04.005CrossRefGoogle Scholar
  20. 20.
    Zhang, X.-Q., Lam, R., Xu, X., et al.: Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 23, 4770–4775 (2011).  https://doi.org/10.1002/adma.201102263CrossRefGoogle Scholar
  21. 21.
    Krishnan, S., Diagaradjane, P., Cho, S.H.: Nanoparticle-mediated thermal therapy: evolving strategies for prostate cancer therapy. Int. J. Hyperth. 26, 775–789 (2010).  https://doi.org/10.3109/02656736.2010.485593CrossRefGoogle Scholar
  22. 22.
    Lowery, A.R., Gobin, A.M., Day, E.S., et al.: Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomedicine. 1, 149–154 (2006).  https://doi.org/10.2147/nano.2006.1.2.149CrossRefGoogle Scholar
  23. 23.
    Cheon, J., Lee, J.-H.: Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 41, 1630–1640 (2008).  https://doi.org/10.1021/ar800045cCrossRefGoogle Scholar
  24. 24.
    Rolfe, B.E., Blakey, I., Squires, O., Peng, H., Boase, N.R., Alexander, C., Parsons, P.G., Boyle, G.M., Whittaker, A.K., Thurecht, K.J.: Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 136(6), 2413–2419 (2014)CrossRefGoogle Scholar
  25. 25.
    Li, Y., Lin, T.-Y., Luo, Y., et al.: A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun. 5, 4712 (2014).  https://doi.org/10.1038/ncomms5712CrossRefGoogle Scholar
  26. 26.
    Volkov, Y.: Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem. Biophys. Res. Commun. 468, 419–427 (2015).  https://doi.org/10.1016/j.bbrc.2015.07.039CrossRefGoogle Scholar
  27. 27.
    Sathishkumar, P., Gu, F.L., Zhan, Q., et al.: Flavonoids mediated “green” nanomaterials: a novel nanomedicine system to treat various diseases – current trends and future perspective. Mater. Lett. 210, 26–30 (2018).  https://doi.org/10.1016/j.matlet.2017.08.078CrossRefGoogle Scholar
  28. 28.
    Dios, A.S.D., Díaz-García, M.E.: Multifunctional nanoparticles: analytical prospects. Anal. Chim. Acta. 666, 1–22 (2010).  https://doi.org/10.1016/j.aca.2010.03.038CrossRefGoogle Scholar
  29. 29.
    Zhang, L., Chan, J.M., Gu, F.X., et al.: Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2, 1696–1702 (2008).  https://doi.org/10.1021/nn800275rCrossRefGoogle Scholar
  30. 30.
    Tong, R., Cheng, J.: Anticancer polymeric nanomedicines. Polym. Rev. 47, 345–381 (2007).  https://doi.org/10.1080/15583720701455079CrossRefGoogle Scholar
  31. 31.
    Zhang, L., Gu, F., Chan, J., et al.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2007).  https://doi.org/10.1038/sj.clpt.6100400CrossRefGoogle Scholar
  32. 32.
    Yong, K.-T., Roy, I., Swihart, M.T., Prasad, P.N.: Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J. Mater. Chem. 19, 4655 (2009).  https://doi.org/10.1039/b817667cCrossRefGoogle Scholar
  33. 33.
    Nie, Z., Petukhova, A., Kumacheva, E.: Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2009).  https://doi.org/10.1038/nnano.2009.453CrossRefGoogle Scholar
  34. 34.
    Elsabahy, M., Wooley, K.L.: Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545 (2012).  https://doi.org/10.1039/c2cs15327kCrossRefGoogle Scholar
  35. 35.
    Hobbs, S.K., Monsky, W.L., Yuan, F., et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. 95, 4607–4612 (1998).  https://doi.org/10.1073/pnas.95.8.4607CrossRefGoogle Scholar
  36. 36.
    Sarin, H.: Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2, 14 (2010).  https://doi.org/10.1186/2040-2384-2-14CrossRefGoogle Scholar
  37. 37.
    Decuzzi, P., Ferrari, M.: The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials. 27, 5307–5314 (2006).  https://doi.org/10.1016/j.biomaterials.2006.05.024CrossRefGoogle Scholar
  38. 38.
    Chen, L., Xiao, S., Zhu, H., et al.: Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter. 12, 2632–2641 (2016).  https://doi.org/10.1039/c5sm01869bCrossRefGoogle Scholar
  39. 39.
    Kolhatkar, A., Jamison, A., Litvinov, D., et al.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977–16009 (2013).  https://doi.org/10.3390/ijms140815977CrossRefGoogle Scholar
  40. 40.
    Hoshyar, N., Gray, S., Han, H., Bao, G.: The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 11, 673–692 (2016).  https://doi.org/10.2217/nnm.16.5CrossRefGoogle Scholar
  41. 41.
    Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B. 110, 7238–7248 (2006).  https://doi.org/10.1021/jp057170oCrossRefGoogle Scholar
  42. 42.
    Bozzuto, G., Molinari, A.: Liposomes as nanomedical devices. Int. J. Nanomedicine. 10, 975–999 (2015).  https://doi.org/10.2147/ijn.s68861CrossRefGoogle Scholar
  43. 43.
    Vieira, D., Gamarra, L.: Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomedicine. 11, 5381–5414 (2016).  https://doi.org/10.2147/ijn.s117210CrossRefGoogle Scholar
  44. 44.
    Mayer, L., Bally, M., Cullis, P.: Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim. Biophys. Acta Biomembr. 857, 123–126 (1986).  https://doi.org/10.1016/0005-2736(86)90105-7CrossRefGoogle Scholar
  45. 45.
    Phillips, M.A., Gran, M.L., Peppas, N.A.: Targeted nanodelivery of drugs and diagnostics. Nano Today. 5, 143–159 (2010).  https://doi.org/10.1016/j.nantod.2010.03.003CrossRefGoogle Scholar
  46. 46.
    Zamboni, W.C.: Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist. 13, 248–260 (2008).  https://doi.org/10.1634/theoncologist.2007-0180CrossRefGoogle Scholar
  47. 47.
    Lasic, D.: Novel applications of liposomes. Trends Biotechnol. 16, 307–321 (1998).  https://doi.org/10.1016/s0167-7799(98)01220-7CrossRefGoogle Scholar
  48. 48.
    Lim, W.-S., Tardi, P.G., Dos Santos, N., Xie, X., Fan, M., Liboiron, B.D., Huang, X., Harasym, T.O., Bermudes, D., Mayer, L.D.: Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine: daunorubicin formulation, in bone marrow xenografts. Leuk. Res. 34(9), 1214–1223 (2010)CrossRefGoogle Scholar
  49. 49.
    U.S. Food and Drug Administration: FDA approves first treatment for certain types of poor-prognosis acute myeloid leukemia [news release], 3 Aug 2017Google Scholar
  50. 50.
    Lin, T.L., Newell, L.F., Stuart, R.K., Michaelis, L.C., Rubenstein, S.E., Pentikis, H.S., Callahan, T., Alvarez, D., Mayer, L.D., Louie, A.C.: CPX-351 ((cytarabine: daunorubicin) liposome injection, (Vyxeos)) does not p\prolong QTcF intervals, requires no dose adjustment for impaired renal function and induces high rates of complete remission in acute myeloid leukemia. Am. Soc. Hematol. 126, 2510 (2015)Google Scholar
  51. 51.
    Ramos-Cabrer, P., Campos, F., Sobrino, T., Castillo, J.: Targeting the ischemic penumbra. Stroke. 42, S7–S11 (2010).  https://doi.org/10.1161/strokeaha.110.596684CrossRefGoogle Scholar
  52. 52.
    Siegal, T., Horowitz, A., Gabizon, A.: Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg. 83, 1029–1037 (1995).  https://doi.org/10.3171/jns.1995.83.6.1029CrossRefGoogle Scholar
  53. 53.
    Patel, N.R., Rathi, A., Mongayt, D., Torchilin, V.P.: Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm. 416, 296–299 (2011).  https://doi.org/10.1016/j.ijpharm.2011.05.082CrossRefGoogle Scholar
  54. 54.
    Thomas, D.A., Sarris, A.H., Cortes, J., et al.: Phase II study of sphingosomal vincristine in patients with recurrent or refractory adult acute lymphocytic leukemia. Cancer. 2006;106:120–7. Cancer. 106, 1641–1641 (2006).  https://doi.org/10.1002/cncr.21856CrossRefGoogle Scholar
  55. 55.
    Mirchandani, D.: Phase I study of combined pegylated liposomal doxorubicin with protracted daily topotecan for ovarian cancer. Clin. Cancer Res. 11, 5912–5919 (2005).  https://doi.org/10.1158/1078-0432.ccr-04-1240CrossRefGoogle Scholar
  56. 56.
    Yoshida, J., Ishibashi, T., Nishio, M.: Antiproliferative effect of Ca2 channel blockers on human epidermoid carcinoma A431 cells. Eur. J. Pharmacol. 472, 23–31 (2003).  https://doi.org/10.1016/s0014-2999(03)01831-4CrossRefGoogle Scholar
  57. 57.
    Kesharwani, P., Jain, K., Jain, N.K.: Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39, 268–307 (2014).  https://doi.org/10.1016/j.progpolymsci.2013.07.005CrossRefGoogle Scholar
  58. 58.
    Parhi, P., Mohanty, C., Sahoo, S.K.: Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today. 17, 1044–1052 (2012).  https://doi.org/10.1016/j.drudis.2012.05.010CrossRefGoogle Scholar
  59. 59.
    Parveen, S., Misra, R., Sahoo, S.K.: Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8, 147–166 (2012).  https://doi.org/10.1016/j.nano.2011.05.016CrossRefGoogle Scholar
  60. 60.
    Hughes, G.A.: Nanostructure-mediated drug delivery. Nanomedicine. 1, 22–30 (2005).  https://doi.org/10.1016/j.nano.2004.11.009CrossRefGoogle Scholar
  61. 61.
    Patri, A., Kukowskalatallo, J., Bakerjr, J.: Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 57, 2203–2214 (2005).  https://doi.org/10.1016/j.addr.2005.09.014CrossRefGoogle Scholar
  62. 62.
    Lee, C.C., Mackay, J.A., Fréchet, J.M.J., Szoka, F.C.: Designing dendrimers for biological applications. Nat. Biotechnol. 23, 1517–1526 (2005).  https://doi.org/10.1038/nbt1171CrossRefGoogle Scholar
  63. 63.
    Shi, C., He, Y., Feng, X., Fu, D.: ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. J. Biomater. Sci. Polym. Ed. 26, 1343–1356 (2015).  https://doi.org/10.1080/09205063.2015.1095023CrossRefGoogle Scholar
  64. 64.
    Klajnert, B., Bryszewska, M.: Dendrimers: properties and applications. Acta Biochim. Pol. 48(1), 198–208 (2001)Google Scholar
  65. 65.
    Mishra, I.: Dendrimer: a novel drug delivery system. J. Drug Deliv. Ther. 1(2), 70–74 (2011).  https://doi.org/10.22270/jddt.v1i2.46CrossRefGoogle Scholar
  66. 66.
    Kaneshiro, T.L., Lu, Z.-R.: Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials. 30, 5660–5666 (2009).  https://doi.org/10.1016/j.biomaterials.2009.06.026CrossRefGoogle Scholar
  67. 67.
    Sarin, H., Kanevsky, A.S., Wu, H., et al.: Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J. Transl. Med. 6, 80 (2008).  https://doi.org/10.1186/1479-5876-6-80CrossRefGoogle Scholar
  68. 68.
    James, R., Baker, J., Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., Patri, A.K., Thomas, T., Mulé, J.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 19(9), 1310–1316 (2002)CrossRefGoogle Scholar
  69. 69.
    Kukowska-Latallo, J.F., Candido, K.A., Cao, Z., et al.: Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).  https://doi.org/10.1158/0008-5472.can-04-3921CrossRefGoogle Scholar
  70. 70.
    Singh, P., Gupta, U., Asthana, A., Jain, N.K.: Folate and folate–PEG–PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem. 19, 2239–2252 (2008).  https://doi.org/10.1021/bc800125uCrossRefGoogle Scholar
  71. 71.
    Barrett, T., Kobayashi, H., Brechbiel, M., Choyke, P.L.: Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur. J. Radiol. 60, 353–366 (2006).  https://doi.org/10.1016/j.ejrad.2006.06.025CrossRefGoogle Scholar
  72. 72.
    Kobayashi, H., Kawamoto, S., Choyke, P.L., et al.: Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn. Reson. Med. 50, 758–766 (2003).  https://doi.org/10.1002/mrm.10583CrossRefGoogle Scholar
  73. 73.
    Almutairi, A., Rossin, R., Shokeen, M., et al.: Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc. Natl. Acad. Sci. 106, 685–690 (2009).  https://doi.org/10.1073/pnas.0811757106CrossRefGoogle Scholar
  74. 74.
    Bagre, A.P., Jain, K., Jain, N.K.: Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int. J. Pharm. 456, 31–40 (2013).  https://doi.org/10.1016/j.ijpharm.2013.08.037CrossRefGoogle Scholar
  75. 75.
    Jain, K., Kesharwani, P., Gupta, U., Jain, N.: Dendrimer toxicity: lets meet the challenge. Int. J. Pharm. 394, 122–142 (2010).  https://doi.org/10.1016/j.ijpharm.2010.04.027CrossRefGoogle Scholar
  76. 76.
    Jain, A., Jain, K., Kesharwani, P., Jain, N.K.: Low density lipoproteins mediated nanoplatforms for cancer targeting. J. Nanopart. Res. 15, (2013).  https://doi.org/10.1007/s11051-013-1888-7
  77. 77.
    Jain, A., Jain, K., Mehra, N.K., Jain, N.K.: Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res. 15, (2013).  https://doi.org/10.1007/s11051-013-2003-9
  78. 78.
    Jain, K., Kesharwani, P., Gupta, U., Jain, N.K.: A review of glycosylated carriers for drug delivery. Biomaterials. 33, 4166–4186 (2012).  https://doi.org/10.1016/j.biomaterials.2012.02.033CrossRefGoogle Scholar
  79. 79.
    Abdullah, L.N., Chow, E.K.-H.: Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2, 3 (2013).  https://doi.org/10.1186/2001-1326-2-3CrossRefGoogle Scholar
  80. 80.
    Longley, D., Johnston, P.: Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).  https://doi.org/10.1002/path.1706CrossRefGoogle Scholar
  81. 81.
    Bansal, T., Akhtar, N., Jaggi, M., et al.: Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov. Today. 14, 1067–1074 (2009).  https://doi.org/10.1016/j.drudis.2009.07.010CrossRefGoogle Scholar
  82. 82.
    Werle, M.: Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res. 25, 500–511 (2007).  https://doi.org/10.1007/s11095-007-9347-8CrossRefGoogle Scholar
  83. 83.
    Demanuele, A., Jevprasesphant, R., Penny, J., Attwood, D.: The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release. 95, 447–453 (2004).  https://doi.org/10.1016/j.jconrel.2003.12.006CrossRefGoogle Scholar
  84. 84.
    Giljohann, D.A., Seferos, D.S., Daniel, W.L., et al.: ChemInform abstract: gold nanoparticles for biology and medicine. ChemInform. 41, (2010).  https://doi.org/10.1002/chin.201032264CrossRefGoogle Scholar
  85. 85.
    Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010).  https://doi.org/10.1016/j.jare.2010.02.002CrossRefGoogle Scholar
  86. 86.
    Loo, C., Lowery, A., Halas, N., et al.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).  https://doi.org/10.1021/nl050127sCrossRefGoogle Scholar
  87. 87.
    Chen, A.M., Scott, M.D.: Current and future applications of immunological attenuation via pegylation of cells and tissue. BioDrugs. 15, 833–847 (2001).  https://doi.org/10.2165/00063030-200115120-00005CrossRefGoogle Scholar
  88. 88.
    Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–228 (2007).  https://doi.org/10.1007/s10103-007-0470-xCrossRefGoogle Scholar
  89. 89.
    Oneal, D.: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).  https://doi.org/10.1016/s0304-3835(04)00144-2CrossRefGoogle Scholar
  90. 90.
    Gobin, A.M., Lee, M.H., Halas, N.J., et al.: Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7, 1929–1934 (2007).  https://doi.org/10.1021/nl070610yCrossRefGoogle Scholar
  91. 91.
    Day, E.S., Zhang, L., Thompson, P.A., et al.: Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine. 7, 1133–1148 (2012).  https://doi.org/10.2217/nnm.11.189CrossRefGoogle Scholar
  92. 92.
    Maeda, H., Fang, J., Inutsuka, T., Kitamoto, Y.: Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328 (2003).  https://doi.org/10.1016/s1567-5769(02)00271-0CrossRefGoogle Scholar
  93. 93.
    Carpin, L.B., Bickford, L.R., Agollah, G., et al.: Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res. Treat. 125, 27–34 (2010).  https://doi.org/10.1007/s10549-010-0811-5CrossRefGoogle Scholar
  94. 94.
    Hirsch, L., West, J., Stafford, R., et al.: Nanoshell-mediated near infrared photothermal tumor therapy. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat No03CH37439). (2003).  https://doi.org/10.1109/iembs.2003.1279474
  95. 95.
    Chen, Y.-H., Tsai, C.-Y., Huang, P.-Y., et al.: Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 4, 713–722 (2007).  https://doi.org/10.1021/mp060132kCrossRefGoogle Scholar
  96. 96.
    Paciotti, G.F., Kingston, D.G., Tamarkin, L.: Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006).  https://doi.org/10.1002/ddr.20066CrossRefGoogle Scholar
  97. 97.
    Paciotti, G.F., Myer, L., Weinreich, D., et al.: Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).  https://doi.org/10.1080/10717540490433895CrossRefGoogle Scholar
  98. 98.
    Jensen, S.A., Day, E.S., Ko, C.H., et al.: Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5, 209ra152 (2013).  https://doi.org/10.1126/scitranslmed.3006839CrossRefGoogle Scholar
  99. 99.
    Wang, H., Chen, Y., Li, X.-Y., Liu, Y.: Synthesis of oligo(ethylenediamino)-β-cyclodextrin modified gold nanoparticle as a DNA concentrator. Mol. Pharm. 4, 189–198 (2007).  https://doi.org/10.1021/mp060045sCrossRefGoogle Scholar
  100. 100.
    Chen, J., Saeki, F., Wiley, B.J., et al.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5, 473–477 (2005).  https://doi.org/10.1021/nl047950tCrossRefGoogle Scholar
  101. 101.
    Sokolov, K., Aaron, J., Pavlova, I., et al.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003)Google Scholar
  102. 102.
    Shi, X., Wang, S., Meshinchi, S., et al.: Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small. 3, 1245–1252 (2007).  https://doi.org/10.1002/smll.200700054CrossRefGoogle Scholar
  103. 103.
    Bachmann, M.F., Jennings, G.T.: Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).  https://doi.org/10.1038/nri2868CrossRefGoogle Scholar
  104. 104.
    Lee, I.-H., Kwon, H.-K., An, S., et al.: Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. 124, 8930–8935 (2012).  https://doi.org/10.1002/ange.201203193CrossRefGoogle Scholar
  105. 105.
    Parry, A.L., Clemson, N.A., Ellis, J., et al.: “Multicopy multivalent” glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J. Am. Chem. Soc. 135, 9362–9365 (2013).  https://doi.org/10.1021/ja4046857CrossRefGoogle Scholar
  106. 106.
    Mendes, R.G., Bachmatiuk, A., Büchner, B., et al.: Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B. 1, 401–428 (2013).  https://doi.org/10.1039/c2tb00085gCrossRefGoogle Scholar
  107. 107.
    Kim, H.-J., Zhang, K., Moore, L., Ho, D.: Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano. 8, 2998–3005 (2014).  https://doi.org/10.1021/nn5002968CrossRefGoogle Scholar
  108. 108.
    Zhang, X.-Q., Chen, M., Lam, R., et al.: Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 3, 2609–2616 (2009).  https://doi.org/10.1021/nn900865gCrossRefGoogle Scholar
  109. 109.
    Chow, E.K., Zhang, X.-Q., Chen, M., et al.: Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011).  https://doi.org/10.1126/scitranslmed.3001713CrossRefGoogle Scholar
  110. 110.
    Manus, L.M., Mastarone, D.J., Waters, E.A., et al.: Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2010).  https://doi.org/10.1021/nl903264hCrossRefGoogle Scholar
  111. 111.
    Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011).  https://doi.org/10.1038/nnano.2011.209CrossRefGoogle Scholar
  112. 112.
    Turner, M.: Diamonds deliver on cancer treatment. Nature. (2011).  https://doi.org/10.1038/news.2011.149
  113. 113.
    Chen, M., Pierstorff, E.D., Lam, R., et al.: Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 3, 2016–2022 (2009).  https://doi.org/10.1021/nn900480mCrossRefGoogle Scholar
  114. 114.
    Vaijayanthimala, V., Cheng, P.-Y., Yeh, S.-H., et al.: The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 33, 7794–7802 (2012).  https://doi.org/10.1016/j.biomaterials.2012.06.084CrossRefGoogle Scholar
  115. 115.
    Yuan, Y., Wang, X., Jia, G., et al.: Pulmonary toxicity and translocation of nanodiamonds in mice. Diam. Relat. Mater. 19, 291–299 (2010).  https://doi.org/10.1016/j.diamond.2009.11.022CrossRefGoogle Scholar
  116. 116.
    Huang, H., Pierstorff, E., Osawa, E., Ho, D.: Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007).  https://doi.org/10.1021/nl071521oCrossRefGoogle Scholar
  117. 117.
    Mohan, N., Chen, C.-S., Hsieh, H.-H., et al.: In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).  https://doi.org/10.1021/nl1021909CrossRefGoogle Scholar
  118. 118.
    Bettinger, T., Remy, J.-S., Erbacher, P.: Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug. Chem. 10, 558–561 (1999).  https://doi.org/10.1021/bc990006hCrossRefGoogle Scholar
  119. 119.
    Chow, E.K.-H., Ho, D.: Cancer nanomedicine: from drug delivery to imaging. Sci. Transl. Med. 5, 216rv4 (2013).  https://doi.org/10.1126/scitranslmed.3005872CrossRefGoogle Scholar
  120. 120.
    Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. ACS Nano. 3, 16–20 (2009).  https://doi.org/10.1021/nn900002mCrossRefGoogle Scholar
  121. 121.
    Peer, D., Karp, J.M., Hong, S., et al.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).  https://doi.org/10.1038/nnano.2007.387CrossRefGoogle Scholar
  122. 122.
    Moore, L., Chow, E.K.-H., Osawa, E., et al.: Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv. Mater. 25, 3532–3541 (2013).  https://doi.org/10.1002/adma.201300343CrossRefGoogle Scholar
  123. 123.
    González, A.B.D., Darby, S.: Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 363, 345–351 (2004).  https://doi.org/10.1016/s0140-6736(04)15433-0CrossRefGoogle Scholar
  124. 124.
    Caravan, P., Ellison, J.J., Mcmurry, T.J., Lauffer, R.B.: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999).  https://doi.org/10.1021/cr980440xCrossRefGoogle Scholar
  125. 125.
    Agrawal, C.M., Ray, R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55, 141–150 (2001).  https://doi.org/10.1002/1097-4636(200105)55:2<141::aid-jbm1000>3.3.co;2-aCrossRefGoogle Scholar
  126. 126.
    Zhang, Q., Mochalin, V.N., Neitzel, I., et al.: Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 32, 87–94 (2011).  https://doi.org/10.1016/j.biomaterials.2010.08.090CrossRefGoogle Scholar
  127. 127.
    Chen, Y., Yin, Q., Ji, X., et al.: Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials. 33, 7126–7137 (2012).  https://doi.org/10.1016/j.biomaterials.2012.06.059CrossRefGoogle Scholar
  128. 128.
    Li, S.-D., Huang, L.: Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release. 145, 178–181 (2010).  https://doi.org/10.1016/j.jconrel.2010.03.016CrossRefGoogle Scholar
  129. 129.
    Herranz, F., Almarza, E., Rodríguez, I., et al.: The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc. Res. Tech. 74, 577–591 (2011).  https://doi.org/10.1002/jemt.20992CrossRefGoogle Scholar
  130. 130.
    Yu, M.K., Park, J., Jon, S.: Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2, 3–44 (2012).  https://doi.org/10.7150/thno.3463CrossRefGoogle Scholar
  131. 131.
    Elias, D.R., Poloukhtine, A., Popik, V., Tsourkas, A.: Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine. 9, 194–201 (2013).  https://doi.org/10.1016/j.nano.2012.05.015CrossRefGoogle Scholar
  132. 132.
    Ferrari, M.: Beyond drug delivery. Nat. Nanotechnol. 3, 131–132 (2008).  https://doi.org/10.1038/nnano.2008.46CrossRefGoogle Scholar
  133. 133.
    Chang, Y., Lee, G.H., Kim, T.-J., Chae, K.-S.: Toxicity of magnetic resonance imaging agents: small molecule and nanoparticle. Curr. Top. Med. Chem. 13, 434–445 (2013).  https://doi.org/10.2174/1568026611313040004CrossRefGoogle Scholar
  134. 134.
    Briley-Saebo, K.C., Amirbekian, V., Mani, V., et al.: Gadolinium mixed-micelles: effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis. Magn. Reson. Med. 56, 1336–1346 (2006).  https://doi.org/10.1002/mrm.21094CrossRefGoogle Scholar
  135. 135.
    Sunderland, C.J., Steiert, M., Talmadge, J.E., et al.: Targeted nanoparticles for detecting and treating cancer. Drug Dev. Res. 67, 70–93 (2006).  https://doi.org/10.1002/ddr.20069CrossRefGoogle Scholar
  136. 136.
    Gelperina, S., Kisich, K., Iseman, M.D., Heifets, L.: The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am. J. Respir. Crit. Care Med. 172, 1487–1490 (2005).  https://doi.org/10.1164/rccm.200504-613ppCrossRefGoogle Scholar
  137. 137.
    Cheng, Z., Zaki, A.A., Hui, J.Z., et al.: Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 338, 903–910 (2012).  https://doi.org/10.1126/science.1226338CrossRefGoogle Scholar
  138. 138.
    Davis, M.E., Chen, Z.G., Shin, D.M.: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nanosci. Technol. 239–250 (2009).  https://doi.org/10.1142/9789814287005_0025CrossRefGoogle Scholar
  139. 139.
    Ho, D., Zarrinpar, A., Chow, E.K.-H.: Diamonds, digital health, and drug development: optimizing combinatorial nanomedicine. ACS Nano. 10, 9087–9092 (2016).  https://doi.org/10.1021/acsnano.6b06174CrossRefGoogle Scholar
  140. 140.
    Wang, H., Lee, D.-K., Chen, K.-Y., et al.: Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology. ACS Nano. 9, 3332–3344 (2015).  https://doi.org/10.1021/acsnano.5b00638CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • James Grant
    • 1
  • Mana Naeim
    • 1
  • Youngshin Lee
    • 1
  • Darron Miya
    • 1
  • Theodore Kee
    • 2
  • Dean Ho
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.School of Dentistry, University of California, Los AngelesLos AngelesUSA
  2. 2.SINAPSE, Departments of Biomedical Engineering and Pharmacology, and Biomedical Institute for Global Health Research and Technology (BIGHEART)National University of SingaporeSingaporeSingapore
  3. 3.Department of BioengineeringUniversity of California, Los Angeles, Henry Samueli School of Engineering and Applied ScienceLos AngelesUSA
  4. 4.Jonsson Comprehensive Cancer Center, University of CaliforniaLos AngelesUSA
  5. 5.California NanoSystems InstituteLos AngelesUSA

Personalised recommendations