Perspectives for Characterizing Drug Component of Theranostic Products Containing Nanomaterials

  • Christie M. SayesEmail author
  • Anthony J. Hickey
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)


Drug products containing engineered nanomaterials provide unique therapeutic opportunities. However, because this field of research and development is rapidly changing, nanomaterial drug products present multiple regulatory challenges. This book chapter summarizes the evolving field of nanotheranostics by exploring the crucial factors that require a multidisciplinary strategy to reach drug safety and efficacy. This includes a brief overview of the United States Pharmacopeia, which recommends standards for drug products and coordinates efforts with the US Food and Drug Administration to ensure the quality of nanomaterial drug products. Lastly, with the safety of human health as a clear target, this chapter reviews manufacturing and analytical considerations that allow for constancy and control of novel drug products.


Manufacturing Quality Regulatory Efficacy Therapeutic Health Human health Drug Safety Drug safety Drug products Agents Development Nanomaterial Theranostic Pharmaceutical Manufacturing considerations Analytical considerations Personalized medicine Critical quality attributes Quality by design United States Pharmacopeia Food and Drug Administration Economic drivers Cancer Databases 



CS thanks Baylor University for resources needed to write this chapter.


  1. 1.
    Sayes, C.M., Aquino, G.V., Hickey, A.J.: Nanomaterial drug products: manufacturing and analytical perspectives. AAPS J. 1–8 (2017)Google Scholar
  2. 2.
    Semenza, G.L.: Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 3(10), 721–732 (2003)CrossRefGoogle Scholar
  3. 3.
    Sutherland, R.M.: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240(4849), 177–184 (1988)CrossRefGoogle Scholar
  4. 4.
    Pearl, L.H., et al.: Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer. 15(3), 166–180 (2015)CrossRefGoogle Scholar
  5. 5.
    Xiao, Q., et al.: A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 135(35), 13041–13048 (2013)CrossRefGoogle Scholar
  6. 6.
    Caldorera-Moore, M.E., Liechty, W.B., Peppas, N.A.: Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res. 44(10), 1061–1070 (2011)CrossRefGoogle Scholar
  7. 7.
    Yu, L.X.: Pharmaceutical quality by design: product and process development, understanding, and control. Pharm. Res. 25(4), 781–791 (2008)CrossRefGoogle Scholar
  8. 8.
    Garnett, M.C.: Targeted drug conjugates: principles and progress. Adv. Drug Deliv. Rev. 53(2), 171–216 (2001)CrossRefGoogle Scholar
  9. 9.
    Hofheinz, R.D., et al.: Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs. 16(7), 691–707 (2005)CrossRefGoogle Scholar
  10. 10.
    Holford, N.H.G., Sheiner, L.B.: Understanding the dose-effect relationship: clinical application of pharmacokinetic-Pharmacodynamic models. Clin. Pharmacokinet. 6(6), 429–453 (1981)CrossRefGoogle Scholar
  11. 11.
    Anatol, R., et al.: Continuing to strengthen FDA's science approach to emerging technologies. Nanomedicine. 9(5), 594–599 (2013)CrossRefGoogle Scholar
  12. 12.
    Edwards, B., Chakraborty, S.: Risk communication and the pharmaceutical industry: what is the reality? Drug Saf. 35(11), 1027–1040 (2012)CrossRefGoogle Scholar
  13. 13.
    Frenk, J., et al.: The new world order and international health. Br. Med. J. 314(7091), 1404–1407 (1997)CrossRefGoogle Scholar
  14. 14.
    Ramachandran, G., et al.: Recommendations for oversight of nanobiotechnology: dynamic oversight for complex and convergent technology. J. Nanopart. Res. 13(4), 1345–1371 (2011)CrossRefGoogle Scholar
  15. 15.
    Strom, B.L.: Risk assessment of drugs, biologics and therapeutic devices: present and future issues. Pharmacoepidemiol. Drug Saf. 12(8), 653–662 (2003)CrossRefGoogle Scholar
  16. 16.
    Vogel, D.: The globalization of pharmaceutical regulation. Governance. 11(1), 1–22 (1998)CrossRefGoogle Scholar
  17. 17.
    Guzan, K.A., et al.: A Nanomaterial Registry, in Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management, 2nd edn, pp. 153–172 Elsevier, Oxford, UK (2014)Google Scholar
  18. 18.
    Guzan, K.A., et al.: Integration of data: the nanomaterial registry project and data curation. Comput. Sci. Disc. 6(1), 014007 (2013).CrossRefGoogle Scholar
  19. 19.
    Mills, K.C., et al.: Nanomaterial registry: Database that captures the minimal information about nanomaterial physico-chemical characteristics. J. Nanopart. Res. 16(2), 2219 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ittrich, H., et al.: Superparamagnetic iron oxide nanoparticles in biomedicine: applications and developments in diagnostics and therapy. Rofo. 185(12), 1149–1166 (2013)CrossRefGoogle Scholar
  21. 21.
    Wang, S., et al.: Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 12(2), 252–264 (2013)CrossRefGoogle Scholar
  22. 22.
    Botelho, M.A., et al.: Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study. Clinics. 69(2), 75–82 (2014)CrossRefGoogle Scholar
  23. 23.
    Sau, S., et al.: Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle. Nanoscale. 6(12), 6745–6754 (2014)CrossRefGoogle Scholar
  24. 24.
    Wegman, F., et al.: Non-viral gene therapy for bone tissue engineering. Biotechnol. Genet. Eng. Rev. 29(2), 206–220 (2013)CrossRefGoogle Scholar
  25. 25.
    György, B., et al.: Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annual Review of Pharmacology and Toxicology. 55, 439–464 (2015)CrossRefGoogle Scholar
  26. 26.
    Kaparakis-Liaskos, M., Ferrero, R.L.: Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15(6), 375–387 (2015)CrossRefGoogle Scholar
  27. 27.
    Pangeni, R., et al.: Resveratrol: review on therapeutic potential and recent advances in drug delivery. Expert Opin. Drug Deliv. 11(8), 1285–1298 (2014)CrossRefGoogle Scholar
  28. 28.
    Bissonnette, L., Bergeron, M.G.: Next revolution in the molecular Theranostics of infectious diseases: microfabricated Systems for Personalized Medicine. Expert. Rev. Mol. Diagn. 6(3), 433–450 (2006)CrossRefGoogle Scholar
  29. 29.
    Chen, A., Chatterjee, S.: Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42(12), 5425–5438 (2013)CrossRefGoogle Scholar
  30. 30.
    Dargaville, T.R., et al.: Sensors and imaging for wound healing: a review. Biosens. Bioelectron. 41(1), 30–42 (2013)CrossRefGoogle Scholar
  31. 31.
    Görlinger, K., et al.: Management of hemorrhage in cardiothoracic surgery. J. Cardiothorac. Vasc. Anesth. 27(4 SUPPL), S20–S34 (2013)CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Solomon, M., Achilefu, S.: Perspectives and potential applications of nanomedicine in breast and prostate cancer. Med. Res. Rev. 33(1), 3–32 (2013)CrossRefGoogle Scholar
  33. 33.
    Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science. 303(5665), 1818–1822 (2004)CrossRefGoogle Scholar
  34. 34.
    Martin, C.R.: Nanomaterials: a membrane-based synthetic approach. Science. 266(5193), 1961–1966 (1994)CrossRefGoogle Scholar
  35. 35.
    Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)Google Scholar
  36. 36.
    Peer, D., et al.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007)CrossRefGoogle Scholar
  37. 37.
    Stuart, M.A.C., et al.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)CrossRefGoogle Scholar
  38. 38.
    Cho, K., et al.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008)CrossRefGoogle Scholar
  39. 39.
    Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2(5), 347–360 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Mehnert, W., Mäder, K.: Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47(2–3), 165–196 (2001)CrossRefGoogle Scholar
  41. 41.
    Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006)CrossRefGoogle Scholar
  42. 42.
    Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer. 5(3), 161–171 (2005)CrossRefGoogle Scholar
  43. 43.
    Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 26(18), 3995–4021 (2005)CrossRefGoogle Scholar
  44. 44.
    Huang, X., et al.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006)CrossRefGoogle Scholar
  45. 45.
    Jain, P.K., et al.: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008)CrossRefGoogle Scholar
  46. 46.
    Åkerman, M.E., et al.: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U. S. A. 99(20), 12617–12621 (2002)CrossRefGoogle Scholar
  47. 47.
    Longmire, M., Choyke, P.L., Kobayashi, H.: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 3(5), 703–717 (2008)CrossRefGoogle Scholar
  48. 48.
    Park, J.H., et al.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8(4), 331–336 (2009)CrossRefGoogle Scholar
  49. 49.
    Huang, J., et al.: A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine. 23(6), 794–801 (2004)CrossRefGoogle Scholar
  50. 50.
    Lu, D., Hickey, A.J.: Pulmonary vaccine delivery. Expert Rev. Vaccines. 6(2), 213–226 (2007)CrossRefGoogle Scholar
  51. 51.
    Garmise, R.J., et al.: Formulation of a dry powder influenza vaccine for nasal delivery. AAPS PharmSciTech. 7(1), E131–E137 (2006)CrossRefGoogle Scholar
  52. 52.
    D'Mello, S.R., et al.: The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12(6), 523 (2017)CrossRefGoogle Scholar
  53. 53.
    Cruz, C.N., et al.: CDER risk assessment exercise to evaluate potential risks from the use of nanomaterials in drug products. AAPS J. 15(3), 623–628 (2013)CrossRefGoogle Scholar
  54. 54.
    Tyner, K., Sadrieh, N.: Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. In: Characterization of Nanoparticles Intended for Drug Delivery, pp. 17–31. Springer, New York, USA (2011)Google Scholar
  55. 55.
    Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4(11), 682–690 (2008)CrossRefGoogle Scholar
  56. 56.
    Begley, C.G., Ellis, L.M.: Drug development: raise standards for preclinical Cancer research. Nature. 483(7391), 531–533 (2012)CrossRefGoogle Scholar
  57. 57.
    Drews, J.: Drug discovery: a historical perspective. Science. 287(5460), 1960–1964 (2000)CrossRefGoogle Scholar
  58. 58.
    Hamburg, M.A., Collins, F.S.: The path to personalized medicine. N. Engl. J. Med. 2010(363), 301–304 (2010)CrossRefGoogle Scholar
  59. 59.
    Bielinski, S.J., et al.: Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time Using Genomic Data to Individualize Treatment Protocol. Mayo Clin. Proc. 89, 25–33 (2014). ElsevierCrossRefGoogle Scholar
  60. 60.
    Benjamin, D.M.: Reducing medication errors and increasing patient safety: case studies in clinical pharmacology. J. Clin. Pharmacol. 43(7), 768–783 (2003)CrossRefGoogle Scholar
  61. 61.
    Kelloff, G.J., Sigman, C.C.: Cancer biomarkers: selecting the right drug for the right patient. Nat. Rev. Drug Discov. 11(3), 201 (2012)CrossRefGoogle Scholar
  62. 62.
    Cockburn, I., Henderson, R.: Racing to invest? The dynamics of competition in ethical drug discovery. J. Econ. Manag. Strateg. 3(3), 481–519 (1994)CrossRefGoogle Scholar
  63. 63.
    Chin, L., Andersen, J.N., Futreal, P.A.: Cancer genomics: from discovery science to personalized medicine. Nat. Med. 17(3), 297–303 (2011)CrossRefGoogle Scholar
  64. 64.
    Trusheim, M.R., Berndt, E.R., Douglas, F.L.: Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 6(4), 287–293 (2007)CrossRefGoogle Scholar
  65. 65.
    Alyass, A., Turcotte, M., Meyre, D.: From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med. Genet. 8(1), 33 (2015)Google Scholar
  66. 66.
    Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 19(12), 491–496 (2001)CrossRefGoogle Scholar
  67. 67.
    Sayes, C.M., Warheit, D.B.: Characterization of nanomaterials for toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(6), 660–670 (2009)CrossRefGoogle Scholar
  68. 68.
    Zhu, M., et al.: Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res. 46(3), 622–631 (2012)CrossRefGoogle Scholar
  69. 69.
    Morton, S.W., et al.: Scalable manufacture of built-to-order nanomedicine: spray-assisted layer-by-layer functionalization of PRINT nanoparticles. Adv. Mater. 25(34), 4707–4713 (2013)CrossRefGoogle Scholar
  70. 70.
    Galloway, A.L., et al.: Development of a nanoparticle-based influenza vaccine using the PRINT® technology. Nanomedicine. 9(4), 523–531 (2013)CrossRefGoogle Scholar
  71. 71.
    Mansour, H.M., Rhee, Y.-S., Wu, X.: Nanomedicine in pulmonary delivery. Int. J. Nanomedicine. 4, 299 (2009)CrossRefGoogle Scholar
  72. 72.
    DeLong, R.K., et al.: Characterization of biomolecular nanoconjugates by high-throughput delivery and spectroscopic difference. Nanomedicine. 7(12), 1851–1862 (2012)CrossRefGoogle Scholar
  73. 73.
    Gaheen, S., et al.: caNanoLab: Data sharing to expedite the use of nanotechnology in biomedicine. Comput. Sci. Discovery. 6(1), 014010 (2013)CrossRefGoogle Scholar
  74. 74.
    Tropsha, A. Nanomaterial registry: present and future. (2016)Google Scholar
  75. 75.
    Bartlett, J.A., et al.: Summary report of PQRI workshop on nanomaterial in drug products: current experience and Management of Potential Risks. AAPS J. 17(1), 44–64 (2015)CrossRefGoogle Scholar
  76. 76.
    Sapsford, K.E., et al.: Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83(12), 4453–4488 (2011)CrossRefGoogle Scholar
  77. 77.
    Tyner, K., Sadrieh, N.: Considerations when submitting nanotherapeutics to FDA/CDER for regulatory review. Methods Mol. Biol. (Clifton, N.J.). 697, 17–31 (2011)CrossRefGoogle Scholar
  78. 78.
    Tyner, K.M., et al.: Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 640–654 (2015)CrossRefGoogle Scholar
  79. 79.
    Hastedt, J.E., et al.: Scope and Relevance Of A Pulmonary Biopharmaceutical Classification System AAPS/FDA/USP Workshop. Springer, Baltimore (2016)Google Scholar
  80. 80.
    Tropsha, A., Mills, K.C., Hickey, A.J.: Reproducibility, sharing and progress in nanomaterial databases. Nat. Nanotechnol. 12(12), 1111 (2017)CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Department of Environmental ScienceBaylor UniversityWacoUSA
  2. 2.RTI InternationalResearch Triangle ParkUSA

Personalised recommendations