Skip to main content

Cancer Nanotherapeutics Administered by Non-conventional Routes

  • Chapter
  • First Online:

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 5))

Abstract

Nanoparticle drug formulations (NDFs) allow for local and durable release of cancer therapeutics, and hold tremendous promise for advancing the efficacy of cancer treatment strategies. NDFs can be administered to patients via a variety of routes, the most common of which is intravenous injection. Unfortunately, the systemic nature of this approach can result in off-target toxicity. Furthermore, many cancers cannot be accessed by intravenous administration. Consequently, recent efforts have applied anatomical targeting strategies to deliver NDFs directly to cancerous lesions. These non-conventional routes of administration can increase the bioavailability of therapeutics while reducing off-target side effects. Importantly, the considerations that underlie NDF design for each anatomical targeting strategy are unique due to obstacles specific to different organs and delivery devices. Clinical trials reporting upon non-conventional administration of NDFs and preclinical studies investigating novel administration techniques are very encouraging. This chapter will discuss the current state and practice of cancer treatment approaches utilizing non-conventional NDF administration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schroeder, A., Heller, D.A., Winslow, M.M., Dahlman, J.E., Pratt, G.W., Langer, R., Jacks, T., Anderson, D.G.: Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 12(1), 39–50 (2011). https://doi.org/10.1038/nrc3180

    Article  Google Scholar 

  2. Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Publ. Group. 17, 1–18 (2016). https://doi.org/10.1038/nrc.2016.108

    Article  Google Scholar 

  3. Cheng, C.J., Tietjen, G.T., Saucier-Sawyer, J.K., Saltzman, W.M.: A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015). https://doi.org/10.1038/nrd4503

    Article  Google Scholar 

  4. Lee, W.-H., Loo, C.-Y., Traini, D., Young, P.M.: Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J. Pharm. Sci. 10, 481–489 (2015). https://doi.org/10.1016/j.ajps.2015.08.009

    Article  Google Scholar 

  5. Johnson, D.H., Schiller, J.H., Bunn, P.A.: Recent clinical advances in lung cancer management. J. Clin. Oncol. 32, 973–982 (2014). https://doi.org/10.1200/JCO.2013.53.1228

    Article  Google Scholar 

  6. Labiris, N.R., Dolovich, M.B.: Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol. 56, 600–612 (2003). https://doi.org/10.1046/j.1365-2125.2003.01893.x

    Article  Google Scholar 

  7. Ruge, C.A., Kirch, J., Lehr, C.-M.: Pulmonary drug delivery: from generating aerosols to overcoming biological barriers-therapeutic possibilities and technological challenges. Lancet Respir. Med. 1, 402–413 (2013). https://doi.org/10.1016/S2213-2600(13)70072-9

    Article  Google Scholar 

  8. Zarogoulidis, P., Chatzaki, E., Porpodis, K., Domvri, K., Hohenforst-Schmidt, W., Goldberg, E.P., Karamanos, N., Zarogoulidis, K.: Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int. J. Nanomedicine. 7, 1551–1522 (2012). https://doi.org/10.2147/IJN.S29997

    Article  Google Scholar 

  9. Rudokas, M., Najlah, M., Alhnan, M.A., Elhissi, A.: Liposome delivery Systems for Inhalation: a critical review highlighting formulation issues and anticancer applications. Med. Princ. Pract. 25, 60–72 (2016). https://doi.org/10.1159/000445116

    Article  Google Scholar 

  10. Ungaro, F., d'Angelo, I., Coletta, C., di Villa Bianca, R.D., Sorrentino, R., Perfetto, B., Tufano, M.A., Miro, A., La Rotonda, M.I., Quaglia, F.: Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Control. Release. 157, 149–159 (2012). https://doi.org/10.1016/j.jconrel.2011.08.010

    Article  Google Scholar 

  11. Muralidharan, P., Malapit, M., Mallory, E., Hayes Jr., D., Mansour, H.M.: Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 11, 1189–1199 (2015). https://doi.org/10.1016/j.nano.2015.01.007

    Article  Google Scholar 

  12. Loira-Pastoriza, C., Todoroff, J., Vanbever, R.: Delivery strategies for sustained drug release in the lungs. Adv. Drug Deliv. Rev. 75, 81–91 (2014). https://doi.org/10.1016/j.addr.2014.05.017

    Article  Google Scholar 

  13. Sturm, R.: Spatial visualization of theoretical nanoparticle deposition in the human respiratory tract. Ann. Transl. Med. 3, 326 (2015). https://doi.org/10.3978/j.issn.2305-5839.2015.12.19

    Article  Google Scholar 

  14. Kleinstreuer, C.: Drug-targeting methodologies with applications: a review. World J. Clin. Cases. 2, 742–716 (2014). https://doi.org/10.12998/wjcc.v2.i12.742

    Article  Google Scholar 

  15. van Rijt, S.H., Bein, T., Meiners, S.: Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 44, 765–774 (2014). https://doi.org/10.1183/09031936.00212813

    Article  Google Scholar 

  16. Lai, S.K., Wang, Y.-Y., Hanes, J.: Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009). https://doi.org/10.1016/j.addr.2008.11.002

    Article  Google Scholar 

  17. Liu, M., Zhang, J., Shan, W., Huang, Y.: Developments of mucus penetrating nanoparticles. Asian J. Pharm. Sci. 10, 275–282 (2015). https://doi.org/10.1016/j.ajps.2014.12.007

    Article  Google Scholar 

  18. Suk, J.S., Lai, S.K., Boylan, N.J., Dawson, M.R., Boyle, M.P., Hanes, J.: Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine. 6, 365–375 (2011). https://doi.org/10.2217/nnm.10.123

    Article  Google Scholar 

  19. Patel, B., Gupta, N., Ahsan, F.: Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur. J. Pharm. Biopharm. 89, 163–174 (2015). https://doi.org/10.1016/j.ejpb.2014.12.001

    Article  Google Scholar 

  20. Champion, J.A., Mitragotri, S.: Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4934 (2006). https://doi.org/10.1073/pnas.0600997103

    Article  Google Scholar 

  21. Skubitz, K.M., Anderson, P.M.: Inhalational interleukin-2 liposomes for pulmonary metastases: a phase I clinical trial. Anti-Cancer Drugs. 11, 555–563 (2000)

    Article  Google Scholar 

  22. Verschraegen, C.F., Gilbert, B.E., Loyer, E., Huaringa, A., Walsh, G., Newman, R.A., Knight, V.: Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin. Cancer Res. 10, 2319–2326 (2004)

    Article  Google Scholar 

  23. Wittgen, B.P.H., Kunst, P.W.A., van der Born, K., van Wijk, A.W., Perkins, W., Pilkiewicz, F.G., Perez-Soler, R., Nicholson, S., Peters, G.J., Postmus, P.E.: Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin. Cancer Res. 13, 2414–2421 (2007). https://doi.org/10.1158/1078-0432.CCR-06-1480

    Article  Google Scholar 

  24. Chou, A.J., Gupta, R., Bell, M.D., Riewe, K.O., Meyers, P.A., Gorlick, R.: Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr. Blood Cancer. 60, 580–586 (2012). https://doi.org/10.1002/pbc.24438

    Article  Google Scholar 

  25. Taratula, O., Kuzmov, A., Shah, M., Garbuzenko, O.B., Minko, T.: Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release. 171, 349–357 (2013). https://doi.org/10.1016/j.jconrel.2013.04.018

    Article  Google Scholar 

  26. Kim, I., Byeon, H.J., Kim, T.H., Lee, E.S., Oh, K.T., Shin, B.S., Lee, K.C., Youn, Y.S.: Doxorubicin-loaded porous PLGA microparticles with surface attached TRAIL for the inhalation treatment of metastatic lung cancer. Biomaterials. 34, 6444–6453 (2013). https://doi.org/10.1016/j.biomaterials.2013.05.018

    Article  Google Scholar 

  27. Revia, R.A., Zhang, M.: Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Biochem. Pharmacol. 19, 157–168 (2016). https://doi.org/10.1016/j.mattod.2015.08.022

    Article  Google Scholar 

  28. Kaliki, S., Shields, C.L.: Uveal melanoma: relatively rare but deadly. Cancer. 31, 1–17 (2016). https://doi.org/10.1038/eye.2016.275

    Article  Google Scholar 

  29. Jovanovic, P., Mihajlovic, M., Djordjevic-Jocic, J., Vlajkovic, S., Cekic, S., Stefanovic, V.: Ocular melanoma: an overview of the current status. Int. J. Clin. Exp. Pathol. 6, 1230–1244 (2013)

    Google Scholar 

  30. Abramson, D.H., Daniels, A.B., Marr, B.P., Francis, J.H., Brodie, S.E., Dunkel, I.J., Gobin, Y.P.: Intra-arterial chemotherapy (ophthalmic artery chemosurgery) for group D retinoblastoma. PLoS One. 11, e0146582 (2016). https://doi.org/10.1371/journal.pone.0146582

    Article  Google Scholar 

  31. You, S., Luo, J., Grossniklaus, H.E., Gou, M.L.: Nanomedicine in the application of uveal melanoma. Int. J. Ophthalmol. 9, 1215–1225 (2016). https://doi.org/10.18240/ijo.2016.08.20

    Article  Google Scholar 

  32. Reimondez-Troitiño, S., Csaba, N., Alonso, M.J., la Fuente de, M.: Nanotherapies for the treatment of ocular diseases. Eur. J. Pharm. Biopharm. 95, 279–293 (2015). https://doi.org/10.1016/j.ejpb.2015.02.019

    Article  Google Scholar 

  33. Weng, Y., Liu, J., Jin, S., Guo, W., Liang, X., Hu, Z.: Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B. 7, 281–291 (2017). https://doi.org/10.1016/j.apsb.2016.09.001

    Article  Google Scholar 

  34. Kompella, U.B., Amrite, A.C., Pacha Ravi, R., Durazo, S.A.: Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog. Retin. Eye Res. 36, 172–198 (2013). https://doi.org/10.1016/j.preteyeres.2013.04.001

    Article  Google Scholar 

  35. Patel, A.: Ocular drug delivery systems: an overview. World J. Pharmacol. 2, 47–35 (2013). https://doi.org/10.5497/wjp.v2.i2.47

    Article  Google Scholar 

  36. Martens, T.F., Remaut, K., Deschout, H.: Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 202, 83–92 (2015). https://doi.org/10.1016/j.jconrel.2015.01.030

    Article  Google Scholar 

  37. Prow, T.W.: Toxicity of nanomaterials to the eye. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 317–333 (2010). https://doi.org/10.1002/wnan.65

    Article  Google Scholar 

  38. Shome, D., Kalita, D., Jain, V., Sarin, R.: Carboplatin loaded polymethylmethacrylate nano-particles in an adjunctive role in retinoblastoma: an animal trial. J. Control Release. 62, 585 (2014). https://doi.org/10.4103/0301-4738.129792

    Article  Google Scholar 

  39. Kalita, D., Shome, D., Jain, V.G., Chadha, K., Bellare, J.R.: In vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. Am J. Ophthalmol. 157, 1109–1115 (2014). https://doi.org/10.1016/j.ajo.2014.01.027

    Article  Google Scholar 

  40. Kang, S.J.: Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch. Ophthalmol. 127, 1043–1049 (2009). https://doi.org/10.1001/archophthalmol.2009.185

    Article  Google Scholar 

  41. Furst, T., Evrard, B., Delvenne, P., Hubert, P., Piel, G.: Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int. J. Pharm. 483, 268–277 (2015). https://doi.org/10.1016/j.ijpharm.2015.02.041

    Article  Google Scholar 

  42. Christie, J.G., Kompella, U.B.: Ophthalmic light sensitive nanocarrier systems. Drug Discov. Today. 13, 124–134 (2008). https://doi.org/10.1016/j.drudis.2007.12.005

    Article  Google Scholar 

  43. Gallud, A.: Functionalized nanoparticles for drug delivery, one- and two-photon photodynamic therapy as a promising treatment of retinoblastoma. J. Clin. Exp. Ophthalmol. 04, 1–4 (2013). https://doi.org/10.4172/2155-9570.1000288

    Article  Google Scholar 

  44. Wang, Z.-J., Chauvin, B., Maillard, P., Hammerer, F., Carez, D., Croisy, A., Sandré, C., Chollet-Martin, S., Prognon, P., Paul, J.-L., Blais, J., Kasselouri, A.: Glycodendrimeric phenylporphyrins as new candidates for retinoblastoma PDT: blood carriers and photodynamic activity in cells. J. Photochem. Photobiol. B Biol. 115, 16–24 (2012). https://doi.org/10.1016/j.jphotobiol.2012.06.005

    Article  Google Scholar 

  45. Ensign, L.M., Cone, R., Hanes, J.: Nanoparticle-based drug delivery to the vagina: a review. J. Control. Release. 190, 500–514 (2014). https://doi.org/10.1016/j.jconrel.2014.04.033

    Article  Google Scholar 

  46. Blum, J.S., Weller, C.E., Booth, C.J., Babar, I.A., Liang, X., Slack, F.J., Saltzman, W.M.: Prevention of K-Ras- and Pten-mediated intravaginal tumors by treatment with camptothecin-loaded PLGA nanoparticles. Drug Deliv.Transl. Res. 1, 383–394 (2011). https://doi.org/10.1007/s13346-011-0038-y

    Article  Google Scholar 

  47. Yang, M., Yu, T., Wang, Y.-Y., Lai, S.K., Zeng, Q., Miao, B., Tang, B.C., Simons, B.W., Ensign, L.M., Liu, G., Chan, K.W.Y., Juang, C.-Y., Mert, O., Wood, J., Fu, J., McMahon, M.T., Wu, T.C., Hung, C.-F., Hanes, J.: Vaginal delivery of paclitaxel via nanoparticles with non-Mucoadhesive surfaces suppresses cervical tumor growth. Adv. Healthc. Mater. 3, 1044–1052 (2013). https://doi.org/10.1002/adhm.201300519

    Article  Google Scholar 

  48. Büyükköroğlu, G., Şenel, B., Başaran, E., Yenilmez, E., Yazan, Y.: Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur. J. Pharm. Biopharm. 109, 174–183 (2016). https://doi.org/10.1016/j.ejpb.2016.10.017

    Article  Google Scholar 

  49. De Rosa, M., Pace, U., Rega, D., Costabile, V., Duraturo, F., Izzo, P., Delrio, P.: Genetics, diagnosis and management of colorectal cancer (review). Oncol. Rep. 34, 1–10 (2015). https://doi.org/10.3892/or.2015.4108

    Article  Google Scholar 

  50. Patel, M.M.: Getting into the colon: approaches to target colorectal cancer. Expert Opin. Drug Deliv. 11, 1343–1350 (2014). https://doi.org/10.1517/17425247.2014.927440

    Article  Google Scholar 

  51. Hua, S., Marks, E., Schneider, J.J., Keely, S.: Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine. 11, 1117–1132 (2015). https://doi.org/10.1016/j.nano.2015.02.018

    Article  Google Scholar 

  52. Kumar, G.V., Kumar, A., Asok Kumar, N., Nair, S.A.: Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon. Int. J. Nanomedicine. 7, 5769–5711 (2012). https://doi.org/10.2147/IJN.S31201

    Article  Google Scholar 

  53. Tummala, S., Kumar, M.N.S., Prakash, A.: Formulation and characterization of 5-fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J. 23, 308–314 (2015). https://doi.org/10.1016/j.jsps.2014.11.010

    Article  Google Scholar 

  54. Sinha, V., Singh, A., Kumar, R.V., Singh, S., Kumria, R., Bhinge, J.: Oral colon-specific drug delivery of protein and peptide drugs. Crit. Rev. Ther. Drug Carrier Syst. 24, 63–92 (2007)

    Article  Google Scholar 

  55. Ding, W., Wang, F., Zhang, J., Guo, Y., Ju, S.: A novel local anti-colorectal cancer drug delivery system: negative lipidoid nanoparticles with a passive target via a size-dependent pattern. Nanotechnology. 24, 105102 (2013). https://doi.org/10.1088/0957-4484/24/10/105102

    Article  Google Scholar 

  56. Ilbasmis-Tamer, S., Unsal, H., Tugcu-Demiroz, F., Kalaycioglu, G.D., Degim, I.T., Aydogan, N.: Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin. Colloids Surf. B Biointerfaces. 143, 406–414 (2016). https://doi.org/10.1016/j.colsurfb.2016.03.070

    Article  Google Scholar 

  57. Feng, H., Zhu, Y., Li, D.: Formulation and evaluation of irinotecan suppository for rectal administration. Biomol. Ther. 22, 78–81 (2014). https://doi.org/10.4062/biomolther.2013.087

    Article  Google Scholar 

  58. Din, F.U., Choi, J.Y., Kim, D.-W., Mustapha, O., Kim, D.S., Thapa, R.K., Ku, S.K., Youn, Y.S., Oh, K.T., Yong, C.S., Kim, J.O., Choi, H.-G.: Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 24, 502–510 (2017). https://doi.org/10.1080/10717544.2016.1272651

    Article  Google Scholar 

  59. Tomlinson, B., Lin, T.-Y., Dall'Era, M., Pan, C.-X.: Nanotechnology in bladder cancer: current state of development and clinical practice. Nanomedicine. 10, 1189–1201 (2015). https://doi.org/10.2217/nnm.14.212

    Article  Google Scholar 

  60. Chen, C.-H., Chan, T.-M., Wu, Y.-J., Chen, J.-J.: Review: application of nanoparticles in urothelial Cancer of the urinary bladder. J. Med. Biol. Eng. 35, 419–427 (2015). https://doi.org/10.1007/s40846-015-0060-5

    Article  Google Scholar 

  61. Luo, L., Jin, X., Zhang, P., Cheng, H., Li, Y., Du, T., Zou, B., Gou, M.: Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int. J. Nanomedicine. 11, 4535–4544 (2016). https://doi.org/10.2147/IJN.S103994

    Article  Google Scholar 

  62. Nakamura, T., Fukiage, M., Higuchi, M., Nakaya, A., Yano, I., Miyazaki, J., Nishiyama, H., Akaza, H., Ito, T., Hosokawa, H., Nakayama, T., Harashima, H.: Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J. Control. Release. 176, 44–53 (2014). https://doi.org/10.1016/j.jconrel.2013.12.027

    Article  Google Scholar 

  63. Erdoğar, N., İskit, A.B., Mungan, N.A., Bilensoy, E.: Prolonged retention and in vivoevaluation of cationic nanoparticles loaded with Mitomycin C designed for intravesical chemotherapy of bladder tumours. J. Microencapsul. 29, 576–582 (2012). https://doi.org/10.3109/02652048.2012.668957

    Article  Google Scholar 

  64. Şenyiğit, Z.A., Karavana, S.Y., Ilem Ozdemir, D., Çalışkan, Ç., Waldner, C., Sen, S., Bernkop-Schnürch, A., Baloglu, E.: Design and evaluation of an intravesical delivery system for superficial bladder cancer: preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int. J. Nanomedicine. 10, 6493–6507 (2015). https://doi.org/10.2147/IJN.S93750

    Article  Google Scholar 

  65. Bassi, P.F., Volpe, A., D'Agostino, D., Palermo, G., Renier, D., Franchini, S., Rosato, A., Racioppi, M.: Paclitaxel-hyaluronic acid for intravesical therapy of bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J. Urol. 185, 445–449 (2011). https://doi.org/10.1016/j.juro.2010.09.073

    Article  Google Scholar 

  66. McKiernan, J.M., Barlow, L.J., Laudano, M.A., Mann, M.J., Petrylak, D.P., Benson, M.C.: A phase I trial of intravesical nanoparticle albumin-bound paclitaxel in the treatment of bacillus Calmette-Guérin refractory nonmuscle invasive bladder cancer. J. Urol. 186, 448–451 (2011). https://doi.org/10.1016/j.juro.2011.03.129

    Article  Google Scholar 

  67. McKiernan, J.M., Holder, D.D., Ghandour, R.A., Barlow, L.J., Ahn, J.J., Kates, M., Badalato, G.M., Roychoudhury, A., Decastro, G.J., Benson, M.C.: Phase II trial of Intravesical nanoparticle albumin bound paclitaxel for the treatment of nonmuscle invasive urothelial carcinoma of the bladder after bacillus Calmette-GuErin treatment failure. J. Urol. 192, 1633–1638 (2014). https://doi.org/10.1016/j.juro.2014.06.084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Z. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roche, K.C., Medik, Y.B., Rodgers, Z., Warner, S., Wang, A.Z. (2019). Cancer Nanotherapeutics Administered by Non-conventional Routes. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01775-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01773-6

  • Online ISBN: 978-3-030-01775-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics