Abstract
Topical and transdermal nanomedicine systems have attracted considerable attention in anticancer therapy. The administration route toward the skin can transport active drugs through the skin barrier and control their entrance into the blood circulation system. Agents delivered through this platform are capable of escaping the first pass of metabolism, which causes physiological degradation of the agent and systemic clearance. Apart from methodology to facilitate the delivery of drug transdermally, the formulation of nanomedicines to preserve the therapeutic’s property is also critical for overall clinical outcomes. This strategy improves the efficiency of encapsulated drugs by potentiating the targeting capability and tailoring the release kinetics toward specific tumors. This chapter summarizes the principles and the recent innovations in the field of transdermal nanomedicine together with opportunities and challenges in clinical translation. For the continued development of novel transdermal devices incorporating nanotechnology, a deeper understanding is required in rational nanoparticle design and their pharmacokinetics.
Keywords
- Drug delivery
- Tumor
- Anticancer
- Topical
- Transdermal
- Delivery routes
- Skin barrier
- Permeability
- Blood circulation
- Systematic clearance
- Chemical enhancer
- Iontophoresis
- Sonophoresis
- Microneedle
- Phototherapy
- Nanocarriers
- Lipid nanovesicles
- Polymeric nanoparticles
- Inorganic nanocarriers
- Encapsulation
- Drug formulation
- Hydrophilicity
- Stability
- Targeting
- Release kinetics
- Therapeutic efficacy
This is a preview of subscription content, access via your institution.
Buying options





References
Prausnitz, M.R., Mitragotri, S., Langer, R.: Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3(2), 115–124 (2004). https://doi.org/10.1038/nrd1304
Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007). https://doi.org/10.1038/nnano.2007.387
Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Kataoka, K., Mirkin, C.A., Petrosko, S.H., Shi, J., Stevens, M.M., Sun, S., Teoh, S., Venkatraman, S.S., Xia, Y., Wang, S., Gu, Z., Xu, C.: Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 9(7), 6644–6654 (2015). https://doi.org/10.1021/acsnano.5b03569
Sonderskov, J., Olsen, J., Sabroe, S., Meillier, L., Overvad, K.: Nicotine patches in smoking cessation: a randomized trial among over-the-counter customers in Denmark. Am. J. Epidemiol. 145(4), 309–318 (1997). https://doi.org/10.1093/oxfordjournals.aje.a009107
Pegoraro, C., MacNeil, S., Battaglia, G.: Transdermal drug delivery: from micro to nano. Nanoscale. 4(6), 1881 (2012). https://doi.org/10.1039/c2nr11606e
Mitragotri, S.: Immunization without needles. Nat. Rev. Immunol. 5(12), 905–916 (2005). https://doi.org/10.1038/nri1728
Giudice, E., Campbell, J.: Needle-free vaccine delivery☆. Adv. Drug. Deliver. Rev. 58(1), 68–89 (2006). https://doi.org/10.1016/j.addr.2005.12.003
Prausnitz, M.R., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008). https://doi.org/10.1038/nbt.1504
Kupper, T.S., Fuhlbrigge, R.C.: Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4(3), 211–222 (2004). https://doi.org/10.1038/nri1310
Labouta, H.I., El-Khordagui, L.K., Kraus, T., Schneider, M.: Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 3(12), 4989 (2011). https://doi.org/10.1039/c1nr11109d
Williams, A.C., Barry, B.W.: Penetration enhancers. Adv. Drug. Deliver. Rev. 56(5), 603–618 (2004). https://doi.org/10.1016/j.addr.2003.10.025
Karande, P., Jain, A., Ergun, K., Kispersky, V., Mitragotri, S.: Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. 102(13), 4688–4693 (2005). https://doi.org/10.1073/pnas.0501176102
Chen, Y., Shen, Y., Guo, X., Zhang, C., Yang, W., Ma, M., Liu, S., Zhang, M., Wen, L.-P.: Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24(4), 455–460 (2006). https://doi.org/10.1038/nbt1193
Hsu, T., Mitragotri, S.: Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. 108(38), 15816–15821 (2011). https://doi.org/10.1073/pnas.1016152108
Chen, M., Gupta, V., Anselmo, A.C., Muraski, J.A., Mitragotri, S.: Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J. Control. Release. 173, 67–74 (2014). https://doi.org/10.1016/j.jconrel.2013.10.007
Pino, C.J., Gutterman, J.U., Vonwil, D., Mitragotri, S., Shastri, V.P.: Glycosylation facilitates transdermal transport of macromolecules. Proc. Natl. Acad. Sci. 109(52), 21283–21288 (2012). https://doi.org/10.1073/pnas.1200942109
Karande, P., Jain, A., Mitragotri, S.: Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22(2), 192–197 (2004). https://doi.org/10.1038/nbt928
Venuganti, V.V.K., Saraswathy, M., Dwivedi, C., Kaushik, R.S., Perumal, O.P.: Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 7(9), 3903–3914 (2015). https://doi.org/10.1039/c4nr05241b
Denet, A.-R., Vanbever, R., Préat, V.: Skin electroporation for transdermal and topical delivery. Adv. Drug. Deliver. Rev. 56(5), 659–674 (2004). https://doi.org/10.1016/j.addr.2003.10.027
Rastogi, R., Anand, S., Koul, V.: Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev. Ind. Pharm. 36(11), 1303–1311 (2010). https://doi.org/10.3109/03639041003786193
Tomoda, K., Watanabe, A., Suzuki, K., Inagi, T., Terada, H., Makino, K.: Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B: Biointerfaces. 97, 84–89 (2012). https://doi.org/10.1016/j.colsurfb.2012.04.002
Byrne, J.D., MNR, J., O'Neill, A.T., Bickford, L.R., Keeler, A.W., Hyder, N., Wagner, K., Deal, A., Little, R.E., Moffitt, R.A., Stack, C., Nelson, M., Brooks, C.R., Lee, W., Luft, J.C., Napier, M.E., Darr, D., Anders, C.K., Stack, R., Tepper, J.E., Wang, A.Z., Zamboni, W.C., Yeh, J.J., JM, D.S.: Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci. Transl. Med. 7(273), 273ra214-273ra214 (2015). https://doi.org/10.1126/scitranslmed.3009951
Calvet, C.Y., Famin, D., André, F.M., Mir, L.M.: Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology. 3(4), e28131 (2014). https://doi.org/10.4161/onci.28131
Shin, J., Shin, K., Lee, H., Nam, J.-B., Jung, J.-E., Ryu, J.-H., Han, J.-H., Suh, K.-D., Kim, Y.-J., Shim, J., Kim, J., Han, S.-H., Char, K., Kim, Y.K., Chung, J.H., Lee, M.J., Kang, B.C., Kim, J.-W.: Non-invasive transdermal delivery route using electrostatically interactive biocompatible nanocapsules. Adv. Mater. 22(6), 739–743 (2010). https://doi.org/10.1002/adma.200902079
Prausnitz, M.R.: The effects of electric current applied to skin: a review for transdermal drug delivery. Adv. Drug. Deliver. Rev. 18(3), 395–425 (1996). https://doi.org/10.1016/0169-409x(95)00081-h
Gupta, J., Prausnitz, M.R.: Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med. Biol. 35(8), 1405–1408 (2009). https://doi.org/10.1016/j.ultrasmedbio.2009.04.001
Mitragotri, S., Blankschtein, D., Langer, R.: Ultrasound-mediated transdermal protein delivery. Science. 269(5225), 850–853 (1995). https://doi.org/10.1126/science.7638603
Mitragotri, S., Kost, J.: Low-frequency sonophoresis. Adv. Drug. Deliver. Rev. 56(5), 589–601 (2004). https://doi.org/10.1016/j.addr.2003.10.024
Naik, A., Kalia, Y.N., Guy, R.H.: Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technolo. Today. 3(9), 318–326 (2000). https://doi.org/10.1016/s1461-5347(00)00295-9
Paithankar, D., Hwang, B.H., Munavalli, G., Kauvar, A., Lloyd, J., Blomgren, R., Faupel, L., Meyer, T., Mitragotri, S.: Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: nanotechnology from the bench to clinic. J. Control. Release. 206, 30–36 (2015). https://doi.org/10.1016/j.jconrel.2015.03.004
Lopez, R.F.V., Seto, J.E., Blankschtein, D., Langer, R.: Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials. 32(3), 933–941 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.060
McAllister, D.V., Wang, P.M., Davis, S.P., Park, J.H., Canatella, P.J., Allen, M.G., Prausnitz, M.R.: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100(24), 13755–13760 (2003). https://doi.org/10.1073/pnas.2331316100
Prausnitz, M.R.: Microneedles for transdermal drug delivery. Adv. Drug. Deliver. Rev. 56(5), 581–587 (2004). https://doi.org/10.1016/j.addr.2003.10.023
Mikszta, J.A., Alarcon, J.B., Brittingham, J.M., Sutter, D.E., Pettis, R.J., Harvey, N.G.: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8(4), 415–419 (2002). https://doi.org/10.1038/nm0402-415
Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016). https://doi.org/10.1038/nnano.2016.38
Wermeling, D.P., Banks, S.L., Hudson, D.A., Gill, H.S., Gupta, J., Prausnitz, M.R., Stinchcomb, A.L.: Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc. Natl. Acad. Sci. 105(6), 2058–2063 (2008). https://doi.org/10.1073/pnas.0710355105
DeMuth, P.C., Li, A.V., Abbink, P., Liu, J., Li, H., Stanley, K.A., Smith, K.M., Lavine, C.L., Seaman, M.S., Kramer, J.A., Miller, A.D., Abraham, W., Suh, H., Elkhader, J., Hammond, P.T., Barouch, D.H., Irvine, D.J.: Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31(12), 1082–1085 (2013). https://doi.org/10.1038/nbt.2759
Su, X., Kim, B.-S., Kim, S.R., Hammond, P.T., Irvine, D.J.: Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano. 3(11), 3719–3729 (2009). https://doi.org/10.1021/nn900928u
DeMuth, P.C., Su, X., Samuel, R.E., Hammond, P.T., Irvine, D.J.: Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22(43), 4851–4856 (2010). https://doi.org/10.1002/adma.201001525
Zaric, M., Lyubomska, O., Touzelet, O., Poux, C., Al-Zahrani, S., Fay, F., Wallace, L., Terhorst, D., Malissen, B., Henri, S., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 7(3), 2042–2055 (2013). https://doi.org/10.1021/nn304235j
Di, J., Yao, S., Ye, Y., Cui, Z., Yu, J., Ghosh, T.K., Zhu, Y., Gu, Z.: Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 9(9), 9407–9415 (2015). https://doi.org/10.1021/acsnano.5b03975
Chen, M.C., Lin, Z.W., Ling, M.H.: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and Photothermal therapy. ACS Nano. 10(1), 93–101 (2016). https://doi.org/10.1021/acsnano.5b05043
Wang, C., Ye, Y., Hochu, G.M., Sadeghifar, H., Gu, Z.: Enhanced Cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16(4), 2334–2340 (2016). https://doi.org/10.1021/acs.nanolett.5b05030
Ye, Y., Wang, J., Hu, Q., Hochu, G.M., Xin, H., Wang, C., Gu, Z.: Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 10(9), 8956–8963 (2016). https://doi.org/10.1021/acsnano.6b04989
Walsh, L., Ryu, J., Bock, S., Koval, M., Mauro, T., Ross, R., Desai, T.: Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 15(4), 2434–2441 (2015). https://doi.org/10.1021/nl504829f
Chen, H., Diebold, G.: Chemical generation of acoustic waves: a Giant photoacoustic effect. Science. 270(5238), 963–966 (1995). https://doi.org/10.1126/science.270.5238.963
Duncan, D.D., Esenaliev, R.O., Hollinger, J.O., Larina, I.V., Larin, K.V., Jacques, S.L., Motamedi, M., Evers, B.M.: Mechanism of laser-induced drug delivery in tumors. International Society for Optics and Photonics. 3914, 188 (2000). https://doi.org/10.1117/12.388045
Kodama, T., Doukas, A.G., Hamblin, M.R.: Shock wave-mediated molecular delivery into cells. Biochim. Biophys. Acta. 1542(1–3), 186–194 (2002). https://doi.org/10.1016/s0167-4889(01)00177-x
Tirlapur, U.K., König, K.: Cell biology: targeted transfection by femtosecond laser. Nature. 418(6895), 290–291 (2002). https://doi.org/10.1038/418290a
Chakravarty, P., Qian, W., El-Sayed, M.A., Prausnitz, M.R.: Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5(8), 607–611 (2010). https://doi.org/10.1038/nnano.2010.126
Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-infrared resonant Nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7(7), 1929–1934 (2007). https://doi.org/10.1021/nl070610y
Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006). https://doi.org/10.1021/ja057254a
Morton, J.G., Day, E.S., Halas, N.J., West, J.L.: Nanoshells for Photothermal Cancer Therapy. Methods Mol. Biol. 624, 101–117 (2010). https://doi.org/10.1007/978-1-60761-609-2_7
Sá, G.F.F., Serpa, C., Arnaut, L.G.: Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J. Control. Release. 167(3), 290–300 (2013). https://doi.org/10.1016/j.jconrel.2013.02.005
Jung, H.S., Kong, W.H., Sung, D.K., Lee, M.Y., Beack, S.E., Keum, D.H., Kim, K.S., Yun, S.H., Hahn, S.K.: Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin Cancer. ACS Nano. 8(1), 260–268 (2014). https://doi.org/10.1021/nn405383a
Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliver Rev. 60(15), 1638–1649 (2008). https://doi.org/10.1016/j.addr.2008.08.002
Lu, Y., Sun, W., Gu, Z.: Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release. 194, 1–19 (2014). https://doi.org/10.1016/j.jconrel.2014.08.015
Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013). https://doi.org/10.1038/nmat3776
Küchler, S., Radowski, M.R., Blaschke, T., Dathe, M., Plendl, J., Haag, R., Schäfer-Korting, M., Kramer, K.D.: Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 71(2), 243–250 (2009). https://doi.org/10.1016/j.ejpb.2008.08.019
Shi, C., Guo, D., Xiao, K., Wang, X., Wang, L., Luo, J.: A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun. 6, 7449 (2015). https://doi.org/10.1038/ncomms8449
Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53(46), 12320–12364 (2014). https://doi.org/10.1002/anie.201403036
Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13(11), 813–827 (2014). https://doi.org/10.1038/nrd4333
Wang, S., Huang, P., Chen, X.: Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano. 10(3), 2991–2994 (2016). https://doi.org/10.1021/acsnano.6b00870
Lin, Y.L., Chen, C.H., Wu, H.Y., Tsai, N.M., Jian, T.Y., Chang, Y.C., Lin, C.H., Wu, C.H., Hsu, F.T., Leung, T.K., Liao, K.W.: Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol. 14, (2016). https://doi.org/10.1186/s12951-016-0163-3
Holme, M.N., Fedotenko, I.A., Abegg, D., Althaus, J., Babel, L., Favarger, F., Reiter, R., Tanasescu, R., Zaffalon, P.-L., Ziegler, A., Müller, B., Saxer, T., Zumbuehl, A.: Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012). https://doi.org/10.1038/nnano.2012.84
Yatvin, M., Weinstein, J., Dennis, W., Blumenthal, R.: Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 202(4374), 1290–1293 (1978). https://doi.org/10.1126/science.364652
Pierre, M.B.R., Tedesco, A.C., Marchetti, J.M., Bentley, M.V.L.B.: Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 1(1), (2001). https://doi.org/10.1186/1471-5945-1-5
Zheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X.-Q., Iordanov, H., Mirkin, C.A., Paller, A.S.: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109(30), 11975–11980 (2012). https://doi.org/10.1073/pnas.1118425109
Kong, M., Hou, L., Wang, J., Feng, C., Liu, Y., Cheng, X., Chen, X.: Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. 51(8), 1453–1456 (2015). https://doi.org/10.1039/c4cc08746a
Prow, T.W., Grice, J.E., Lin, L.L., Faye, R., Butler, M., Becker, W., Wurm, E.M.T., Yoong, C., Robertson, T.A., Soyer, H.P., Roberts, M.S.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Deliver. Rev. 63(6), 470–491 (2011). https://doi.org/10.1016/j.addr.2011.01.012
Mangalathillam, S., Rejinold, N.S., Nair, A., Lakshmanan, V.K., Nair, S.V., Jayakumar, R.: Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 4(1), 239–250 (2012). https://doi.org/10.1039/c1nr11271f
Toyoda, M., Hama, S., Ikeda, Y., Nagasaki, Y., Kogure, K.: Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm. 483(1–2), 110–114 (2015). https://doi.org/10.1016/j.ijpharm.2015.02.024
Abdel-Mottaleb, M.M.A., Neumann, D., Lamprecht, A.: Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 79(1), 36–42 (2011). https://doi.org/10.1016/j.ejpb.2011.04.009
Zaric, M., Lyubomska, O., Poux, C., Hanna, M.L., McCrudden, M.T., Malissen, B., Ingram, R.J., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells. J. Invest. Dermatol. 135(2), 425–434 (2015). https://doi.org/10.1038/jid.2014.415
Özbaş-Turan, S., Akbuğa, J.: Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Deliv. 18(3), 215–222 (2011). https://doi.org/10.3109/10717544.2010.544688
Kim, H.J., Takemoto, H., Yi, Y., Zheng, M., Maeda, Y., Chaya, H., Hayashi, K., Mi, P., Pittella, F., Christie, R.J., Toh, K., Matsumoto, Y., Nishiyama, N., Miyata, K., Kataoka, K.: Precise engineering of siRNA delivery vehicles to tumors using Polyion complexes and gold nanoparticles. ACS Nano. 8(9), 8979–8991 (2014). https://doi.org/10.1021/nn502125h
Lee, H., Lee, J.H., Kim, J., Mun, J.H., Chung, J., Koo, H., Kim, C., Yun, S.H., Hahn, S.K.: Hyaluronate–gold Nanorod/DR5 antibody complex for noninvasive Theranosis of skin Cancer. ACS Appl. Mater. Interfaces. 8(47), 32202–32210 (2016). https://doi.org/10.1021/acsami.6b11319
Labala, S., Mandapalli, P.K., Kurumaddali, A., Venuganti, V.V.K.: Layer-by-layer polymer coated gold nanoparticles for topical delivery of Imatinib Mesylate to treat melanoma. Mol. Pharm. 12(3), 878–888 (2015). https://doi.org/10.1021/mp5007163
Wu, J., Paudel, K.S., Strasinger, C., Hammell, D., Stinchcomb, A.L., Hinds, B.J.: Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc. Natl. Acad. Sci. 107(26), 11698–11702 (2010). https://doi.org/10.1073/pnas.1004714107
Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004). https://doi.org/10.1038/nbt994
Cevc, G.: Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug. Deliver. Rev. 56(5), 675–711 (2004). https://doi.org/10.1016/j.addr.2003.10.028
Jiang, T., Mo, R., Bellotti, A., Zhou, J., Gu, Z.: Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 24(16), 2295–2304 (2014). https://doi.org/10.1002/adfm.201303222
Linderoth, L., Peters, G.H., Madsen, R., Andresen, T.L.: Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties. Angew. Chem. Int. Ed. 48(10), 1823–1826 (2009). https://doi.org/10.1002/anie.200805241
Mo, R., Jiang, T., Gu, Z.: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126(23), 5925–5930 (2014). https://doi.org/10.1002/ange.201400268
Sahay, G., Querbes, W., Alabi, C., Eltoukhy, A., Sarkar, S., Zurenko, C., Karagiannis, E., Love, K., Chen, D., Zoncu, R., Buganim, Y., Schroeder, A., Langer, R., Anderson, D.G.: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013). https://doi.org/10.1038/nbt.2614
Khan, A., Shukla, Y., Kalra, N., Alam, M., Ahmad, M.G., Hakim, S.R., Owais, M.: Potential of diallyl sulfide bearing pH-sensitive liposomes in chemoprevention against DMBA-induced skin papilloma. Mol. Med. 13(7–8), 443–451 (2007). https://doi.org/10.2119/2006-00111.Khan
Bharadwaj, R., Das, P.J., Pal, P., Mazumder, B.: Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev. Ind. Pharm. 42(9), 1482–1494 (2016). https://doi.org/10.3109/03639045.2016.1151028
Bonatto, C.C., Joanitti, G.A., Silva, L.P.: In vitro cytotoxic activity of chitosan–bullfrog oil microemulsion against melanoma cells. IET Nanobiotechnol. 9(4), 172–177 (2015). https://doi.org/10.1049/iet-nbt.2014.0010
Bhatia, A., Singh, B., Raza, K., Shukla, A., Amarji, B., Katare, O.P.: Tamoxifen-loaded novel liposomal formulations: evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis. J. Drug Target. 20(6), 544–550 (2012). https://doi.org/10.3109/1061186x.2012.694887
LeDuc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2(1), 3–7 (2007). https://doi.org/10.1038/nnano.2006.180
Lu, Y., Aimetti, A.A., Langer, R., Gu, Z.: Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2016). https://doi.org/10.1038/natrevmats.2016.75
Sun, W., Hu, Q., Ji, W., Wright, G., Gu, Z.: Leveraging physiology for precision drug delivery. Physiol. Rev. 97(1), 189–225 (2016). https://doi.org/10.1152/physrev.00015.2016
Gu, Z., Yan, M., Hu, B., Joo, K.-I., Biswas, A., Huang, Y., Lu, Y., Wang, P., Tang, Y.: Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 9(12), 4533–4538 (2009). https://doi.org/10.1021/nl902935b
Kang, J.-H., Asai, D., Kim, J.-H., Mori, T., Toita, R., Tomiyama, T., Asami, Y., Oishi, J., Sato, Y.T., Niidome, T., Jun, B., Nakashima, H., Katayama, Y.: Design of Polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Cα activation in Cancer cells. J. Am. Chem. Soc. 130(45), 14906–14907 (2008). https://doi.org/10.1021/ja805364s
Kost, J., Langer, R.: Responsive polymeric delivery systems. Adv. Drug. Deliver. Rev. 46(1–3), 125–148 (2001). https://doi.org/10.1016/s0169-409x(00)00136-8
Napoli, A., Valentini, M., Tirelli, N., Müller, M., Hubbell, J.A.: Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004). https://doi.org/10.1038/nmat1081
Tong, R., Tang, L., Ma, L., Tu, C., Baumgartner, R., Cheng, J.: Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43(20), 6982–7012 (2014). https://doi.org/10.1039/c4cs00133h
Choi, W.I., Lee, J.H., Kim, J.-Y., Kim, J.-C., Kim, Y.H., Tae, G.: Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release. 157(2), 272–278 (2012). https://doi.org/10.1016/j.jconrel.2011.08.013
Zhao, Q.-H., Zhang, Y., Liu, Y., Wang, H.-L., Shen, Y.-Y., Yang, W.-J., Wen, L.-P.: Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med. Oncol. 27(2), 203–212 (2009). https://doi.org/10.1007/s12032-009-9192-1
Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A.: Transmutable nanoparticles with reconfigurable surface ligands. Science. 351(6273), 579–582 (2016). https://doi.org/10.1126/science.aad2212
Lu, Y., Hu, Q., Lin, Y., Pacardo, D.B., Wang, C., Sun, W., Ligler, F.S., Dickey, M.D., Gu, Z.: Transformable liquid-metal nanomedicine. Nat. Commun. 6, 10066 (2015). https://doi.org/10.1038/ncomms10066
Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem. Int. Ed. 50(38), 8853–8857 (2011). https://doi.org/10.1002/anie.201101536
Wang, C., Flynn, N.T., Langer, R.: Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13), 1074–1079 (2004). https://doi.org/10.1002/adma.200306516
Huang, H.-C., Barua, S., Sharma, G., Dey, S.K., Rege, K.: Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release. 155(3), 344–357 (2011). https://doi.org/10.1016/j.jconrel.2011.06.004
Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A.: Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 134(35), 14542–14554 (2012). https://doi.org/10.1021/ja305245g
Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2(5), 889–896 (2008). https://doi.org/10.1021/nn800072t
Mi, P., Kokuryo, D., Cabral, H., Wu, H., Terada, Y., Saga, T., Aoki, I., Nishiyama, N., Kataoka, K.: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016). https://doi.org/10.1038/nnano.2016.72
Bozich, J.S., Lohse, S.E., Torelli, M.D., Murphy, C.J., Hamers, R.J., Klaper, R.D.: Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano. 1(3), 260–270 (2014). https://doi.org/10.1039/c4en00006d
Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z.-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X.Y.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3), 473–477 (2005). https://doi.org/10.1021/nl047950t
Oh, N., Park, J.-H.: Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano. 8(6), 6232–6241 (2014). https://doi.org/10.1021/nn501668a
Zhang, P., Chen, L., Xu, T., Liu, H., Liu, X., Meng, J., Yang, G., Jiang, L., Wang, S.: Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of Cancer cells. Adv. Mater. 25(26), 3566–3570 (2013). https://doi.org/10.1002/adma.201300888
Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., Kim, D.-H.: Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/nnano.2014.38
Service, R.: Spherical RNA therapy shows promise against psoriasis in first human trial. Science. (2016). https://doi.org/10.1126/science.aah7240
Randeria, P.S., Seeger, M.A., Wang, X.-Q., Wilson, H., Shipp, D., Mirkin, C.A., Paller, A.S.: siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. 112(18), 5573–5578 (2015). https://doi.org/10.1073/pnas.1505951112
Mitragotri, S., Burke, P.A., Langer, R.: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13(9), 655–672 (2014). https://doi.org/10.1038/nrd4363
Yu, J., Zhang, Y., Bomba, H., Gu, Z.: Stimuli-responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 1(3), 323–337 (2016). https://doi.org/10.1002/btm2.10036
Ye, Y., Wang, C., Zhang, X., Hu, Q., Zhang, Y., Liu, Q., Wen, D., Milligan, J., Bellotti, A., Huang, L., Dotti, G., Gu, Z.: A melanin-mediated cancer immunotherapy patch. Sci. Immun. 2(17), eaan5692 (2017).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
About this chapter
Cite this chapter
Ye, Y., Wang, J., Sun, W., Bomba, H.N., Gu, Z. (2019). Topical and Transdermal Nanomedicines for Cancer Therapy. In: Rai, P., Morris, S.A. (eds) Nanotheranostics for Cancer Applications. Bioanalysis, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-01775-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-01775-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01773-6
Online ISBN: 978-3-030-01775-0
eBook Packages: EngineeringEngineering (R0)