Advertisement

Topical and Transdermal Nanomedicines for Cancer Therapy

  • Yanqi Ye
  • Jinqiang Wang
  • Wujin Sun
  • Hunter N. Bomba
  • Zhen GuEmail author
Chapter
Part of the Bioanalysis book series (BIOANALYSIS, volume 5)

Abstract

Topical and transdermal nanomedicine systems have attracted considerable attention in anticancer therapy. The administration route toward the skin can transport active drugs through the skin barrier and control their entrance into the blood circulation system. Agents delivered through this platform are capable of escaping the first pass of metabolism, which causes physiological degradation of the agent and systemic clearance. Apart from methodology to facilitate the delivery of drug transdermally, the formulation of nanomedicines to preserve the therapeutic’s property is also critical for overall clinical outcomes. This strategy improves the efficiency of encapsulated drugs by potentiating the targeting capability and tailoring the release kinetics toward specific tumors. This chapter summarizes the principles and the recent innovations in the field of transdermal nanomedicine together with opportunities and challenges in clinical translation. For the continued development of novel transdermal devices incorporating nanotechnology, a deeper understanding is required in rational nanoparticle design and their pharmacokinetics.

Keywords

Drug delivery Tumor Anticancer Topical Transdermal Delivery routes Skin barrier Permeability Blood circulation Systematic clearance Chemical enhancer Iontophoresis Sonophoresis Microneedle Phototherapy Nanocarriers Lipid nanovesicles Polymeric nanoparticles Inorganic nanocarriers Encapsulation Drug formulation Hydrophilicity Stability Targeting Release kinetics Therapeutic efficacy 

References

  1. 1.
    Prausnitz, M.R., Mitragotri, S., Langer, R.: Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3(2), 115–124 (2004).  https://doi.org/10.1038/nrd1304CrossRefGoogle Scholar
  2. 2.
    Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R.: Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2(12), 751–760 (2007).  https://doi.org/10.1038/nnano.2007.387CrossRefGoogle Scholar
  3. 3.
    Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Kataoka, K., Mirkin, C.A., Petrosko, S.H., Shi, J., Stevens, M.M., Sun, S., Teoh, S., Venkatraman, S.S., Xia, Y., Wang, S., Gu, Z., Xu, C.: Accelerating the translation of nanomaterials in biomedicine. ACS Nano. 9(7), 6644–6654 (2015).  https://doi.org/10.1021/acsnano.5b03569CrossRefGoogle Scholar
  4. 4.
    Sonderskov, J., Olsen, J., Sabroe, S., Meillier, L., Overvad, K.: Nicotine patches in smoking cessation: a randomized trial among over-the-counter customers in Denmark. Am. J. Epidemiol. 145(4), 309–318 (1997).  https://doi.org/10.1093/oxfordjournals.aje.a009107CrossRefGoogle Scholar
  5. 5.
    Pegoraro, C., MacNeil, S., Battaglia, G.: Transdermal drug delivery: from micro to nano. Nanoscale. 4(6), 1881 (2012).  https://doi.org/10.1039/c2nr11606eCrossRefGoogle Scholar
  6. 6.
    Mitragotri, S.: Immunization without needles. Nat. Rev. Immunol. 5(12), 905–916 (2005).  https://doi.org/10.1038/nri1728CrossRefGoogle Scholar
  7. 7.
    Giudice, E., Campbell, J.: Needle-free vaccine delivery☆. Adv. Drug. Deliver. Rev. 58(1), 68–89 (2006).  https://doi.org/10.1016/j.addr.2005.12.003CrossRefGoogle Scholar
  8. 8.
    Prausnitz, M.R., Langer, R.: Transdermal drug delivery. Nat. Biotechnol. 26(11), 1261–1268 (2008).  https://doi.org/10.1038/nbt.1504CrossRefGoogle Scholar
  9. 9.
    Kupper, T.S., Fuhlbrigge, R.C.: Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4(3), 211–222 (2004).  https://doi.org/10.1038/nri1310CrossRefGoogle Scholar
  10. 10.
    Labouta, H.I., El-Khordagui, L.K., Kraus, T., Schneider, M.: Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 3(12), 4989 (2011).  https://doi.org/10.1039/c1nr11109dCrossRefGoogle Scholar
  11. 11.
    Williams, A.C., Barry, B.W.: Penetration enhancers. Adv. Drug. Deliver. Rev. 56(5), 603–618 (2004).  https://doi.org/10.1016/j.addr.2003.10.025CrossRefGoogle Scholar
  12. 12.
    Karande, P., Jain, A., Ergun, K., Kispersky, V., Mitragotri, S.: Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. 102(13), 4688–4693 (2005).  https://doi.org/10.1073/pnas.0501176102CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Shen, Y., Guo, X., Zhang, C., Yang, W., Ma, M., Liu, S., Zhang, M., Wen, L.-P.: Transdermal protein delivery by a coadministered peptide identified via phage display. Nat. Biotechnol. 24(4), 455–460 (2006).  https://doi.org/10.1038/nbt1193CrossRefGoogle Scholar
  14. 14.
    Hsu, T., Mitragotri, S.: Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. 108(38), 15816–15821 (2011).  https://doi.org/10.1073/pnas.1016152108CrossRefGoogle Scholar
  15. 15.
    Chen, M., Gupta, V., Anselmo, A.C., Muraski, J.A., Mitragotri, S.: Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers. J. Control. Release. 173, 67–74 (2014).  https://doi.org/10.1016/j.jconrel.2013.10.007CrossRefGoogle Scholar
  16. 16.
    Pino, C.J., Gutterman, J.U., Vonwil, D., Mitragotri, S., Shastri, V.P.: Glycosylation facilitates transdermal transport of macromolecules. Proc. Natl. Acad. Sci. 109(52), 21283–21288 (2012).  https://doi.org/10.1073/pnas.1200942109CrossRefGoogle Scholar
  17. 17.
    Karande, P., Jain, A., Mitragotri, S.: Discovery of transdermal penetration enhancers by high-throughput screening. Nat. Biotechnol. 22(2), 192–197 (2004).  https://doi.org/10.1038/nbt928CrossRefGoogle Scholar
  18. 18.
    Venuganti, V.V.K., Saraswathy, M., Dwivedi, C., Kaushik, R.S., Perumal, O.P.: Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale. 7(9), 3903–3914 (2015).  https://doi.org/10.1039/c4nr05241bCrossRefGoogle Scholar
  19. 19.
    Denet, A.-R., Vanbever, R., Préat, V.: Skin electroporation for transdermal and topical delivery. Adv. Drug. Deliver. Rev. 56(5), 659–674 (2004).  https://doi.org/10.1016/j.addr.2003.10.027CrossRefGoogle Scholar
  20. 20.
    Rastogi, R., Anand, S., Koul, V.: Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev. Ind. Pharm. 36(11), 1303–1311 (2010).  https://doi.org/10.3109/03639041003786193CrossRefGoogle Scholar
  21. 21.
    Tomoda, K., Watanabe, A., Suzuki, K., Inagi, T., Terada, H., Makino, K.: Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B: Biointerfaces. 97, 84–89 (2012).  https://doi.org/10.1016/j.colsurfb.2012.04.002CrossRefGoogle Scholar
  22. 22.
    Byrne, J.D., MNR, J., O'Neill, A.T., Bickford, L.R., Keeler, A.W., Hyder, N., Wagner, K., Deal, A., Little, R.E., Moffitt, R.A., Stack, C., Nelson, M., Brooks, C.R., Lee, W., Luft, J.C., Napier, M.E., Darr, D., Anders, C.K., Stack, R., Tepper, J.E., Wang, A.Z., Zamboni, W.C., Yeh, J.J., JM, D.S.: Local iontophoretic administration of cytotoxic therapies to solid tumors. Sci. Transl. Med. 7(273), 273ra214-273ra214 (2015).  https://doi.org/10.1126/scitranslmed.3009951CrossRefGoogle Scholar
  23. 23.
    Calvet, C.Y., Famin, D., André, F.M., Mir, L.M.: Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology. 3(4), e28131 (2014).  https://doi.org/10.4161/onci.28131CrossRefGoogle Scholar
  24. 24.
    Shin, J., Shin, K., Lee, H., Nam, J.-B., Jung, J.-E., Ryu, J.-H., Han, J.-H., Suh, K.-D., Kim, Y.-J., Shim, J., Kim, J., Han, S.-H., Char, K., Kim, Y.K., Chung, J.H., Lee, M.J., Kang, B.C., Kim, J.-W.: Non-invasive transdermal delivery route using electrostatically interactive biocompatible nanocapsules. Adv. Mater. 22(6), 739–743 (2010).  https://doi.org/10.1002/adma.200902079CrossRefGoogle Scholar
  25. 25.
    Prausnitz, M.R.: The effects of electric current applied to skin: a review for transdermal drug delivery. Adv. Drug. Deliver. Rev. 18(3), 395–425 (1996).  https://doi.org/10.1016/0169-409x(95)00081-hCrossRefGoogle Scholar
  26. 26.
    Gupta, J., Prausnitz, M.R.: Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med. Biol. 35(8), 1405–1408 (2009).  https://doi.org/10.1016/j.ultrasmedbio.2009.04.001CrossRefGoogle Scholar
  27. 27.
    Mitragotri, S., Blankschtein, D., Langer, R.: Ultrasound-mediated transdermal protein delivery. Science. 269(5225), 850–853 (1995).  https://doi.org/10.1126/science.7638603CrossRefGoogle Scholar
  28. 28.
    Mitragotri, S., Kost, J.: Low-frequency sonophoresis. Adv. Drug. Deliver. Rev. 56(5), 589–601 (2004).  https://doi.org/10.1016/j.addr.2003.10.024CrossRefGoogle Scholar
  29. 29.
    Naik, A., Kalia, Y.N., Guy, R.H.: Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technolo. Today. 3(9), 318–326 (2000).  https://doi.org/10.1016/s1461-5347(00)00295-9CrossRefGoogle Scholar
  30. 30.
    Paithankar, D., Hwang, B.H., Munavalli, G., Kauvar, A., Lloyd, J., Blomgren, R., Faupel, L., Meyer, T., Mitragotri, S.: Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: nanotechnology from the bench to clinic. J. Control. Release. 206, 30–36 (2015).  https://doi.org/10.1016/j.jconrel.2015.03.004CrossRefGoogle Scholar
  31. 31.
    Lopez, R.F.V., Seto, J.E., Blankschtein, D., Langer, R.: Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials. 32(3), 933–941 (2011).  https://doi.org/10.1016/j.biomaterials.2010.09.060CrossRefGoogle Scholar
  32. 32.
    McAllister, D.V., Wang, P.M., Davis, S.P., Park, J.H., Canatella, P.J., Allen, M.G., Prausnitz, M.R.: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc. Natl. Acad. Sci. 100(24), 13755–13760 (2003).  https://doi.org/10.1073/pnas.2331316100CrossRefGoogle Scholar
  33. 33.
    Prausnitz, M.R.: Microneedles for transdermal drug delivery. Adv. Drug. Deliver. Rev. 56(5), 581–587 (2004).  https://doi.org/10.1016/j.addr.2003.10.023CrossRefGoogle Scholar
  34. 34.
    Mikszta, J.A., Alarcon, J.B., Brittingham, J.M., Sutter, D.E., Pettis, R.J., Harvey, N.G.: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8(4), 415–419 (2002).  https://doi.org/10.1038/nm0402-415CrossRefGoogle Scholar
  35. 35.
    Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016).  https://doi.org/10.1038/nnano.2016.38CrossRefGoogle Scholar
  36. 36.
    Wermeling, D.P., Banks, S.L., Hudson, D.A., Gill, H.S., Gupta, J., Prausnitz, M.R., Stinchcomb, A.L.: Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc. Natl. Acad. Sci. 105(6), 2058–2063 (2008).  https://doi.org/10.1073/pnas.0710355105CrossRefGoogle Scholar
  37. 37.
    DeMuth, P.C., Li, A.V., Abbink, P., Liu, J., Li, H., Stanley, K.A., Smith, K.M., Lavine, C.L., Seaman, M.S., Kramer, J.A., Miller, A.D., Abraham, W., Suh, H., Elkhader, J., Hammond, P.T., Barouch, D.H., Irvine, D.J.: Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31(12), 1082–1085 (2013).  https://doi.org/10.1038/nbt.2759CrossRefGoogle Scholar
  38. 38.
    Su, X., Kim, B.-S., Kim, S.R., Hammond, P.T., Irvine, D.J.: Layer-by-layer-assembled multilayer films for transcutaneous drug and vaccine delivery. ACS Nano. 3(11), 3719–3729 (2009).  https://doi.org/10.1021/nn900928uCrossRefGoogle Scholar
  39. 39.
    DeMuth, P.C., Su, X., Samuel, R.E., Hammond, P.T., Irvine, D.J.: Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22(43), 4851–4856 (2010).  https://doi.org/10.1002/adma.201001525CrossRefGoogle Scholar
  40. 40.
    Zaric, M., Lyubomska, O., Touzelet, O., Poux, C., Al-Zahrani, S., Fay, F., Wallace, L., Terhorst, D., Malissen, B., Henri, S., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 7(3), 2042–2055 (2013).  https://doi.org/10.1021/nn304235jCrossRefGoogle Scholar
  41. 41.
    Di, J., Yao, S., Ye, Y., Cui, Z., Yu, J., Ghosh, T.K., Zhu, Y., Gu, Z.: Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano. 9(9), 9407–9415 (2015).  https://doi.org/10.1021/acsnano.5b03975CrossRefGoogle Scholar
  42. 42.
    Chen, M.C., Lin, Z.W., Ling, M.H.: Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and Photothermal therapy. ACS Nano. 10(1), 93–101 (2016).  https://doi.org/10.1021/acsnano.5b05043CrossRefGoogle Scholar
  43. 43.
    Wang, C., Ye, Y., Hochu, G.M., Sadeghifar, H., Gu, Z.: Enhanced Cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16(4), 2334–2340 (2016).  https://doi.org/10.1021/acs.nanolett.5b05030CrossRefGoogle Scholar
  44. 44.
    Ye, Y., Wang, J., Hu, Q., Hochu, G.M., Xin, H., Wang, C., Gu, Z.: Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 10(9), 8956–8963 (2016).  https://doi.org/10.1021/acsnano.6b04989CrossRefGoogle Scholar
  45. 45.
    Walsh, L., Ryu, J., Bock, S., Koval, M., Mauro, T., Ross, R., Desai, T.: Nanotopography facilitates in vivo transdermal delivery of high molecular weight therapeutics through an integrin-dependent mechanism. Nano Lett. 15(4), 2434–2441 (2015).  https://doi.org/10.1021/nl504829fCrossRefGoogle Scholar
  46. 46.
    Chen, H., Diebold, G.: Chemical generation of acoustic waves: a Giant photoacoustic effect. Science. 270(5238), 963–966 (1995).  https://doi.org/10.1126/science.270.5238.963CrossRefGoogle Scholar
  47. 47.
    Duncan, D.D., Esenaliev, R.O., Hollinger, J.O., Larina, I.V., Larin, K.V., Jacques, S.L., Motamedi, M., Evers, B.M.: Mechanism of laser-induced drug delivery in tumors. International Society for Optics and Photonics. 3914, 188 (2000).  https://doi.org/10.1117/12.388045
  48. 48.
    Kodama, T., Doukas, A.G., Hamblin, M.R.: Shock wave-mediated molecular delivery into cells. Biochim. Biophys. Acta. 1542(1–3), 186–194 (2002).  https://doi.org/10.1016/s0167-4889(01)00177-xCrossRefGoogle Scholar
  49. 49.
    Tirlapur, U.K., König, K.: Cell biology: targeted transfection by femtosecond laser. Nature. 418(6895), 290–291 (2002).  https://doi.org/10.1038/418290aCrossRefGoogle Scholar
  50. 50.
    Chakravarty, P., Qian, W., El-Sayed, M.A., Prausnitz, M.R.: Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5(8), 607–611 (2010).  https://doi.org/10.1038/nnano.2010.126CrossRefGoogle Scholar
  51. 51.
    Gobin, A.M., Lee, M.H., Halas, N.J., James, W.D., Drezek, R.A., West, J.L.: Near-infrared resonant Nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 7(7), 1929–1934 (2007).  https://doi.org/10.1021/nl070610yCrossRefGoogle Scholar
  52. 52.
    Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128(6), 2115–2120 (2006).  https://doi.org/10.1021/ja057254aCrossRefGoogle Scholar
  53. 53.
    Morton, J.G., Day, E.S., Halas, N.J., West, J.L.: Nanoshells for Photothermal Cancer Therapy. Methods Mol. Biol. 624, 101–117 (2010).  https://doi.org/10.1007/978-1-60761-609-2_7CrossRefGoogle Scholar
  54. 54.
    Sá, G.F.F., Serpa, C., Arnaut, L.G.: Stratum corneum permeabilization with photoacoustic waves generated by piezophotonic materials. J. Control. Release. 167(3), 290–300 (2013).  https://doi.org/10.1016/j.jconrel.2013.02.005CrossRefGoogle Scholar
  55. 55.
    Jung, H.S., Kong, W.H., Sung, D.K., Lee, M.Y., Beack, S.E., Keum, D.H., Kim, K.S., Yun, S.H., Hahn, S.K.: Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin Cancer. ACS Nano. 8(1), 260–268 (2014).  https://doi.org/10.1021/nn405383aCrossRefGoogle Scholar
  56. 56.
    Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug. Deliver Rev. 60(15), 1638–1649 (2008).  https://doi.org/10.1016/j.addr.2008.08.002CrossRefGoogle Scholar
  57. 57.
    Lu, Y., Sun, W., Gu, Z.: Stimuli-responsive nanomaterials for therapeutic protein delivery. J. Control. Release. 194, 1–19 (2014).  https://doi.org/10.1016/j.jconrel.2014.08.015CrossRefGoogle Scholar
  58. 58.
    Mura, S., Nicolas, J., Couvreur, P.: Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12(11), 991–1003 (2013).  https://doi.org/10.1038/nmat3776CrossRefGoogle Scholar
  59. 59.
    Küchler, S., Radowski, M.R., Blaschke, T., Dathe, M., Plendl, J., Haag, R., Schäfer-Korting, M., Kramer, K.D.: Nanoparticles for skin penetration enhancement – a comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 71(2), 243–250 (2009).  https://doi.org/10.1016/j.ejpb.2008.08.019CrossRefGoogle Scholar
  60. 60.
    Shi, C., Guo, D., Xiao, K., Wang, X., Wang, L., Luo, J.: A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun. 6, 7449 (2015).  https://doi.org/10.1038/ncomms8449CrossRefGoogle Scholar
  61. 61.
    Sun, T., Zhang, Y.S., Pang, B., Hyun, D.C., Yang, M., Xia, Y.: Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl. 53(46), 12320–12364 (2014).  https://doi.org/10.1002/anie.201403036CrossRefGoogle Scholar
  62. 62.
    Torchilin, V.P.: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13(11), 813–827 (2014).  https://doi.org/10.1038/nrd4333CrossRefGoogle Scholar
  63. 63.
    Wang, S., Huang, P., Chen, X.: Stimuli-responsive programmed specific targeting in nanomedicine. ACS Nano. 10(3), 2991–2994 (2016).  https://doi.org/10.1021/acsnano.6b00870CrossRefGoogle Scholar
  64. 64.
    Lin, Y.L., Chen, C.H., Wu, H.Y., Tsai, N.M., Jian, T.Y., Chang, Y.C., Lin, C.H., Wu, C.H., Hsu, F.T., Leung, T.K., Liao, K.W.: Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol. 14, (2016).  https://doi.org/10.1186/s12951-016-0163-3
  65. 65.
    Holme, M.N., Fedotenko, I.A., Abegg, D., Althaus, J., Babel, L., Favarger, F., Reiter, R., Tanasescu, R., Zaffalon, P.-L., Ziegler, A., Müller, B., Saxer, T., Zumbuehl, A.: Shear-stress sensitive lenticular vesicles for targeted drug delivery. Nat. Nanotechnol. 7(8), 536–543 (2012).  https://doi.org/10.1038/nnano.2012.84CrossRefGoogle Scholar
  66. 66.
    Yatvin, M., Weinstein, J., Dennis, W., Blumenthal, R.: Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 202(4374), 1290–1293 (1978).  https://doi.org/10.1126/science.364652CrossRefGoogle Scholar
  67. 67.
    Pierre, M.B.R., Tedesco, A.C., Marchetti, J.M., Bentley, M.V.L.B.: Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 1(1), (2001).  https://doi.org/10.1186/1471-5945-1-5
  68. 68.
    Zheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X.-Q., Iordanov, H., Mirkin, C.A., Paller, A.S.: Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109(30), 11975–11980 (2012).  https://doi.org/10.1073/pnas.1118425109CrossRefGoogle Scholar
  69. 69.
    Kong, M., Hou, L., Wang, J., Feng, C., Liu, Y., Cheng, X., Chen, X.: Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. 51(8), 1453–1456 (2015).  https://doi.org/10.1039/c4cc08746aCrossRefGoogle Scholar
  70. 70.
    Prow, T.W., Grice, J.E., Lin, L.L., Faye, R., Butler, M., Becker, W., Wurm, E.M.T., Yoong, C., Robertson, T.A., Soyer, H.P., Roberts, M.S.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Deliver. Rev. 63(6), 470–491 (2011).  https://doi.org/10.1016/j.addr.2011.01.012CrossRefGoogle Scholar
  71. 71.
    Mangalathillam, S., Rejinold, N.S., Nair, A., Lakshmanan, V.K., Nair, S.V., Jayakumar, R.: Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 4(1), 239–250 (2012).  https://doi.org/10.1039/c1nr11271fCrossRefGoogle Scholar
  72. 72.
    Toyoda, M., Hama, S., Ikeda, Y., Nagasaki, Y., Kogure, K.: Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis. Int. J. Pharm. 483(1–2), 110–114 (2015).  https://doi.org/10.1016/j.ijpharm.2015.02.024CrossRefGoogle Scholar
  73. 73.
    Abdel-Mottaleb, M.M.A., Neumann, D., Lamprecht, A.: Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur. J. Pharm. Biopharm. 79(1), 36–42 (2011).  https://doi.org/10.1016/j.ejpb.2011.04.009CrossRefGoogle Scholar
  74. 74.
    Zaric, M., Lyubomska, O., Poux, C., Hanna, M.L., McCrudden, M.T., Malissen, B., Ingram, R.J., Power, U.F., Scott, C.J., Donnelly, R.F., Kissenpfennig, A.: Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells. J. Invest. Dermatol. 135(2), 425–434 (2015).  https://doi.org/10.1038/jid.2014.415CrossRefGoogle Scholar
  75. 75.
    Özbaş-Turan, S., Akbuğa, J.: Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Deliv. 18(3), 215–222 (2011).  https://doi.org/10.3109/10717544.2010.544688CrossRefGoogle Scholar
  76. 76.
    Kim, H.J., Takemoto, H., Yi, Y., Zheng, M., Maeda, Y., Chaya, H., Hayashi, K., Mi, P., Pittella, F., Christie, R.J., Toh, K., Matsumoto, Y., Nishiyama, N., Miyata, K., Kataoka, K.: Precise engineering of siRNA delivery vehicles to tumors using Polyion complexes and gold nanoparticles. ACS Nano. 8(9), 8979–8991 (2014).  https://doi.org/10.1021/nn502125hCrossRefGoogle Scholar
  77. 77.
    Lee, H., Lee, J.H., Kim, J., Mun, J.H., Chung, J., Koo, H., Kim, C., Yun, S.H., Hahn, S.K.: Hyaluronate–gold Nanorod/DR5 antibody complex for noninvasive Theranosis of skin Cancer. ACS Appl. Mater. Interfaces. 8(47), 32202–32210 (2016).  https://doi.org/10.1021/acsami.6b11319CrossRefGoogle Scholar
  78. 78.
    Labala, S., Mandapalli, P.K., Kurumaddali, A., Venuganti, V.V.K.: Layer-by-layer polymer coated gold nanoparticles for topical delivery of Imatinib Mesylate to treat melanoma. Mol. Pharm. 12(3), 878–888 (2015).  https://doi.org/10.1021/mp5007163CrossRefGoogle Scholar
  79. 79.
    Wu, J., Paudel, K.S., Strasinger, C., Hammell, D., Stinchcomb, A.L., Hinds, B.J.: Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc. Natl. Acad. Sci. 107(26), 11698–11702 (2010).  https://doi.org/10.1073/pnas.1004714107CrossRefGoogle Scholar
  80. 80.
    Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004).  https://doi.org/10.1038/nbt994CrossRefGoogle Scholar
  81. 81.
    Cevc, G.: Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug. Deliver. Rev. 56(5), 675–711 (2004).  https://doi.org/10.1016/j.addr.2003.10.028CrossRefGoogle Scholar
  82. 82.
    Jiang, T., Mo, R., Bellotti, A., Zhou, J., Gu, Z.: Gel-liposome-mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 24(16), 2295–2304 (2014).  https://doi.org/10.1002/adfm.201303222CrossRefGoogle Scholar
  83. 83.
    Linderoth, L., Peters, G.H., Madsen, R., Andresen, T.L.: Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties. Angew. Chem. Int. Ed. 48(10), 1823–1826 (2009).  https://doi.org/10.1002/anie.200805241CrossRefGoogle Scholar
  84. 84.
    Mo, R., Jiang, T., Gu, Z.: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126(23), 5925–5930 (2014).  https://doi.org/10.1002/ange.201400268CrossRefGoogle Scholar
  85. 85.
    Sahay, G., Querbes, W., Alabi, C., Eltoukhy, A., Sarkar, S., Zurenko, C., Karagiannis, E., Love, K., Chen, D., Zoncu, R., Buganim, Y., Schroeder, A., Langer, R., Anderson, D.G.: Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 31(7), 653–658 (2013).  https://doi.org/10.1038/nbt.2614CrossRefGoogle Scholar
  86. 86.
    Khan, A., Shukla, Y., Kalra, N., Alam, M., Ahmad, M.G., Hakim, S.R., Owais, M.: Potential of diallyl sulfide bearing pH-sensitive liposomes in chemoprevention against DMBA-induced skin papilloma. Mol. Med. 13(7–8), 443–451 (2007).  https://doi.org/10.2119/2006-00111.KhanCrossRefGoogle Scholar
  87. 87.
    Bharadwaj, R., Das, P.J., Pal, P., Mazumder, B.: Topical delivery of paclitaxel for treatment of skin cancer. Drug Dev. Ind. Pharm. 42(9), 1482–1494 (2016).  https://doi.org/10.3109/03639045.2016.1151028CrossRefGoogle Scholar
  88. 88.
    Bonatto, C.C., Joanitti, G.A., Silva, L.P.: In vitro cytotoxic activity of chitosan–bullfrog oil microemulsion against melanoma cells. IET Nanobiotechnol. 9(4), 172–177 (2015).  https://doi.org/10.1049/iet-nbt.2014.0010CrossRefGoogle Scholar
  89. 89.
    Bhatia, A., Singh, B., Raza, K., Shukla, A., Amarji, B., Katare, O.P.: Tamoxifen-loaded novel liposomal formulations: evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis. J. Drug Target. 20(6), 544–550 (2012).  https://doi.org/10.3109/1061186x.2012.694887CrossRefGoogle Scholar
  90. 90.
    LeDuc, P.R., Wong, M.S., Ferreira, P.M., Groff, R.E., Haslinger, K., Koonce, M.P., Lee, W.Y., Love, J.C., McCammon, J.A., Monteiro-Riviere, N.A., Rotello, V.M., Rubloff, G.W., Westervelt, R., Yoda, M.: Towards an in vivo biologically inspired nanofactory. Nat. Nanotechnol. 2(1), 3–7 (2007).  https://doi.org/10.1038/nnano.2006.180CrossRefGoogle Scholar
  91. 91.
    Lu, Y., Aimetti, A.A., Langer, R., Gu, Z.: Bioresponsive materials. Nat. Rev. Mater. 2(1), 16075 (2016).  https://doi.org/10.1038/natrevmats.2016.75CrossRefGoogle Scholar
  92. 92.
    Sun, W., Hu, Q., Ji, W., Wright, G., Gu, Z.: Leveraging physiology for precision drug delivery. Physiol. Rev. 97(1), 189–225 (2016).  https://doi.org/10.1152/physrev.00015.2016CrossRefGoogle Scholar
  93. 93.
    Gu, Z., Yan, M., Hu, B., Joo, K.-I., Biswas, A., Huang, Y., Lu, Y., Wang, P., Tang, Y.: Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 9(12), 4533–4538 (2009).  https://doi.org/10.1021/nl902935bCrossRefGoogle Scholar
  94. 94.
    Kang, J.-H., Asai, D., Kim, J.-H., Mori, T., Toita, R., Tomiyama, T., Asami, Y., Oishi, J., Sato, Y.T., Niidome, T., Jun, B., Nakashima, H., Katayama, Y.: Design of Polymeric carriers for cancer-specific gene targeting: utilization of abnormal protein kinase Cα activation in Cancer cells. J. Am. Chem. Soc. 130(45), 14906–14907 (2008).  https://doi.org/10.1021/ja805364sCrossRefGoogle Scholar
  95. 95.
    Kost, J., Langer, R.: Responsive polymeric delivery systems. Adv. Drug. Deliver. Rev. 46(1–3), 125–148 (2001).  https://doi.org/10.1016/s0169-409x(00)00136-8CrossRefGoogle Scholar
  96. 96.
    Napoli, A., Valentini, M., Tirelli, N., Müller, M., Hubbell, J.A.: Oxidation-responsive polymeric vesicles. Nat. Mater. 3(3), 183–189 (2004).  https://doi.org/10.1038/nmat1081CrossRefGoogle Scholar
  97. 97.
    Tong, R., Tang, L., Ma, L., Tu, C., Baumgartner, R., Cheng, J.: Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43(20), 6982–7012 (2014).  https://doi.org/10.1039/c4cs00133hCrossRefGoogle Scholar
  98. 98.
    Choi, W.I., Lee, J.H., Kim, J.-Y., Kim, J.-C., Kim, Y.H., Tae, G.: Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J. Control. Release. 157(2), 272–278 (2012).  https://doi.org/10.1016/j.jconrel.2011.08.013CrossRefGoogle Scholar
  99. 99.
    Zhao, Q.-H., Zhang, Y., Liu, Y., Wang, H.-L., Shen, Y.-Y., Yang, W.-J., Wen, L.-P.: Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med. Oncol. 27(2), 203–212 (2009).  https://doi.org/10.1007/s12032-009-9192-1CrossRefGoogle Scholar
  100. 100.
    Kim, Y., Macfarlane, R.J., Jones, M.R., Mirkin, C.A.: Transmutable nanoparticles with reconfigurable surface ligands. Science. 351(6273), 579–582 (2016).  https://doi.org/10.1126/science.aad2212CrossRefGoogle Scholar
  101. 101.
    Lu, Y., Hu, Q., Lin, Y., Pacardo, D.B., Wang, C., Sun, W., Ligler, F.S., Dickey, M.D., Gu, Z.: Transformable liquid-metal nanomedicine. Nat. Commun. 6, 10066 (2015).  https://doi.org/10.1038/ncomms10066CrossRefGoogle Scholar
  102. 102.
    Rim, H.P., Min, K.H., Lee, H.J., Jeong, S.Y., Lee, S.C.: pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem. Int. Ed. 50(38), 8853–8857 (2011).  https://doi.org/10.1002/anie.201101536CrossRefGoogle Scholar
  103. 103.
    Wang, C., Flynn, N.T., Langer, R.: Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16(13), 1074–1079 (2004).  https://doi.org/10.1002/adma.200306516CrossRefGoogle Scholar
  104. 104.
    Huang, H.-C., Barua, S., Sharma, G., Dey, S.K., Rege, K.: Inorganic nanoparticles for cancer imaging and therapy. J. Control. Release. 155(3), 344–357 (2011).  https://doi.org/10.1016/j.jconrel.2011.06.004CrossRefGoogle Scholar
  105. 105.
    Langille, M.R., Personick, M.L., Zhang, J., Mirkin, C.A.: Defining rules for the shape evolution of gold nanoparticles. J. Am. Chem. Soc. 134(35), 14542–14554 (2012).  https://doi.org/10.1021/ja305245gCrossRefGoogle Scholar
  106. 106.
    Liong, M., Lu, J., Kovochich, M., Xia, T., Ruehm, S.G., Nel, A.E., Tamanoi, F., Zink, J.I.: Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2(5), 889–896 (2008).  https://doi.org/10.1021/nn800072tCrossRefGoogle Scholar
  107. 107.
    Mi, P., Kokuryo, D., Cabral, H., Wu, H., Terada, Y., Saga, T., Aoki, I., Nishiyama, N., Kataoka, K.: A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat. Nanotechnol. 11(8), 724–730 (2016).  https://doi.org/10.1038/nnano.2016.72CrossRefGoogle Scholar
  108. 108.
    Bozich, J.S., Lohse, S.E., Torelli, M.D., Murphy, C.J., Hamers, R.J., Klaper, R.D.: Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ. Sci. Nano. 1(3), 260–270 (2014).  https://doi.org/10.1039/c4en00006dCrossRefGoogle Scholar
  109. 109.
    Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z.-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X.Y.: Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3), 473–477 (2005).  https://doi.org/10.1021/nl047950tCrossRefGoogle Scholar
  110. 110.
    Oh, N., Park, J.-H.: Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano. 8(6), 6232–6241 (2014).  https://doi.org/10.1021/nn501668aCrossRefGoogle Scholar
  111. 111.
    Zhang, P., Chen, L., Xu, T., Liu, H., Liu, X., Meng, J., Yang, G., Jiang, L., Wang, S.: Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of Cancer cells. Adv. Mater. 25(26), 3566–3570 (2013).  https://doi.org/10.1002/adma.201300888CrossRefGoogle Scholar
  112. 112.
    Son, D., Lee, J., Qiao, S., Ghaffari, R., Kim, J., Lee, J.E., Song, C., Kim, S.J., Lee, D.J., Jun, S.W., Yang, S., Park, M., Shin, J., Do, K., Lee, M., Kang, K., Hwang, C.S., Lu, N., Hyeon, T., Kim, D.-H.: Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014).  https://doi.org/10.1038/nnano.2014.38CrossRefGoogle Scholar
  113. 113.
    Service, R.: Spherical RNA therapy shows promise against psoriasis in first human trial. Science. (2016).  https://doi.org/10.1126/science.aah7240
  114. 114.
    Randeria, P.S., Seeger, M.A., Wang, X.-Q., Wilson, H., Shipp, D., Mirkin, C.A., Paller, A.S.: siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. 112(18), 5573–5578 (2015).  https://doi.org/10.1073/pnas.1505951112CrossRefGoogle Scholar
  115. 115.
    Mitragotri, S., Burke, P.A., Langer, R.: Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13(9), 655–672 (2014).  https://doi.org/10.1038/nrd4363CrossRefGoogle Scholar
  116. 116.
    Yu, J., Zhang, Y., Bomba, H., Gu, Z.: Stimuli-responsive delivery of therapeutics for diabetes treatment. Bioeng. Transl. Med. 1(3), 323–337 (2016).  https://doi.org/10.1002/btm2.10036CrossRefGoogle Scholar
  117. 117.
    Ye, Y., Wang, C., Zhang, X., Hu, Q., Zhang, Y., Liu, Q., Wen, D., Milligan, J., Bellotti, A., Huang, L., Dotti, G., Gu, Z.: A melanin-mediated cancer immunotherapy patch. Sci. Immun. 2(17), eaan5692 (2017).CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Yanqi Ye
    • 1
    • 2
  • Jinqiang Wang
    • 1
    • 2
  • Wujin Sun
    • 1
    • 2
  • Hunter N. Bomba
    • 1
  • Zhen Gu
    • 1
    • 2
    • 3
    Email author
  1. 1.Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighUSA
  2. 2.Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug DeliveryUNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations