Advertisement

ConvoMap: Using Convolution to Order Boolean Data

  • Thomas Bollen
  • Guillaume Leurquin
  • Siegfried NijssenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11191)

Abstract

Heatmaps, also called matrix visualisations, are a popular technique for visualising boolean data. They are easy to understand, and provide a relatively loss-free image of a given dataset. However, they are also highly dependent on the order of rows and columns chosen. We propose a novel technique, called ConvoMap, for ordering the rows and columns of a matrix such that the resulting image represents data faithfully. ConvoMap uses a novel optimisation criterion based on convolution to obtain a good column and row order. While in this paper we focus on the creation of images for exploratory data analysis in binary data, the simplicity of the ConvoMap optimisation criterion could allow for the creation of images for many other types of data as well.

References

  1. 1.
    Chen, C-h, Härdle, W., Unwin, A.: Handbook of Data Visualization. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-33037-0CrossRefzbMATHGoogle Scholar
  2. 2.
    Bollen, T., Leurquin, G.: Faithful visualization of categorical data. Master’s thesis (2017). Université catholique de Louvain, Louvain-la-NeuveGoogle Scholar
  3. 3.
    Hubert, L.J.: Some applications of graph theory and related nonmetric techniques to problems of approximate seriation: the case of symmetric proximity measures. Br. J. Math. Stat. Psychol. 27, 133–153 (1974)CrossRefGoogle Scholar
  4. 4.
    Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28, 297–310 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hahsler, M., Hornik, K. Buchta, C.: Getting things in order: an introduction to the R package seriation. J. Stat. Softw. Artic. 25(3) (2008)Google Scholar
  6. 6.
    Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. 3(2), 70–91 (2010)MathSciNetGoogle Scholar
  7. 7.
    Kaski, P., Junttila, E.: Segmented nestedness in binary data. In: Proceedings of the Eleventh SIAM International Conference on Data Mining, pp. 235–246 (2011)Google Scholar
  8. 8.
    Garriga, G.C., Junttila, E., Mannila, H.: Banded structure in binary matrices. Knowl. Inf. Syst. 28(1), 197–226 (2011)CrossRefGoogle Scholar
  9. 9.
    Junttila, E.: Patterns in permuted binary matrices. PhD thesis, University of Helsinki (2011)Google Scholar
  10. 10.
    Mäkinen, E., Siirtola, H.: The barycenter heuristic and the reorderable matrix. Inf. (Slov.) 29(3), 357–364 (2005)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem, Report 388, Graduate School of Industrial Administration, CMU (1976)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Thomas Bollen
    • 1
  • Guillaume Leurquin
    • 1
  • Siegfried Nijssen
    • 1
    Email author
  1. 1.ICTEAM, UCLouvainLouvain-la-NeuveBelgium

Personalised recommendations