Skip to main content

Don’t Rule Out Simple Models Prematurely: A Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XVII (IDA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11191))

Included in the following conference series:

Abstract

A basic step for each data-mining or machine learning task is to determine which model to choose based on the problem and the data at hand. In this paper we investigate when non-linear classifiers outperform linear classifiers by means of a large scale experiment. We benchmark linear and non-linear versions of three types of classifiers (support vector machines; neural networks; and decision trees), and analyze the results to determine on what type of datasets the non-linear version performs better. To the best of our knowledge, this work is the first principled and large scale attempt to support the common assumption that non-linear classifiers excel only when large amounts of data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study, we do not compare (still quite interpretable) decision trees against (more powerful, yet less interpretable) random forests in order to limit ourselves purely to a comparison of linear vs. non-linear models.

  2. 2.

    https://www.openml.org/s/123.

References

  1. Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J. Bank. Financ. 18(3), 505–529 (1994)

    Article  Google Scholar 

  2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bischl, B., et al.: OpenML Benchmarking Suites and the OpenML100. arXiv preprint arXiv:1708.03731 (2017)

  4. Chu, C.W., Zhang, G.P.: A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 86(3), 217–231 (2003)

    Article  Google Scholar 

  5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7(Jan), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Flach, P., Kull, M.: Precision-recall-gain curves: PR analysis done right. In: Advances in Neural Information Processing Systems, pp. 838–846 (2015)

    Google Scholar 

  7. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)

    Article  Google Scholar 

  8. Gaudart, J., Giusiano, B., Huiart, L.: Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Comput. Stat. Data Anal. 44(4), 547–570 (2004)

    Article  MathSciNet  Google Scholar 

  9. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-making and a “right to explanation”. arXiv preprints arXiv:1606.08813 (June 2016)

  10. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares Support Vector Machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015)

    Article  Google Scholar 

  11. Olier, I., et al.: Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Mach. Learn. 1–27 (2018)

    Google Scholar 

  12. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  13. Pino-Mejías, R., Pérez-Fargallo, A., Rubio-Bellido, C., Pulido-Arcas, J.A.: Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO\(_2\) emissions. Energy 118, 24–36 (2017)

    Article  Google Scholar 

  14. Post, Martijn J., van der Putten, Peter, van Rijn, Jan N.: Does feature selection improve classification? A large scale experiment in OpenML. In: Boström, Henrik, Knobbe, Arno, Soares, Carlos, Papapetrou, Panagiotis (eds.) IDA 2016. LNCS, vol. 9897, pp. 158–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_14

    Chapter  Google Scholar 

  15. van der Putten, P., van Someren, M.: A bias-variance analysis of a real world learning problem: The CoIL Challenge 2000. Mach. Learn. 57(1), 177–195 (2004)

    Article  Google Scholar 

  16. Rahimi, A., Recht, B.: Reflections on random kitchen sinks (2017)

    Google Scholar 

  17. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  18. van Rijn, J.N.: Massively Collaborative Machine Learning. Ph.D. thesis, Leiden University (2016)

    Google Scholar 

  19. van Rijn, J.N., Hutter, F.: Hyperparameter importance across datasets. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2367–2376. ACM (2018)

    Google Scholar 

  20. Ross, B.C.: Mutual information between discrete and continuous data sets. PloS one 9(2), e87357 (2014)

    Article  Google Scholar 

  21. Schütze, H., Hull, D.A., Pedersen, J.O.: A comparison of classifiers and document representations for the routing problem. In: Proceedings of the 18th annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 229–237. ACM (1995)

    Google Scholar 

  22. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? On pace, progress, and empirical rigor. In: Proceedings of ICLR 2018 (2018)

    Google Scholar 

  23. Swanson, N.R., White, H.: A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks. Rev. Econ. Stat. 79(4), 540–550 (1997)

    Article  Google Scholar 

  24. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explo. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work has partly been supported by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme under grant no. 716721. The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 39/963-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Strang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Strang, B., Putten, P.v.d., Rijn, J.N.v., Hutter, F. (2018). Don’t Rule Out Simple Models Prematurely: A Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML. In: Duivesteijn, W., Siebes, A., Ukkonen, A. (eds) Advances in Intelligent Data Analysis XVII. IDA 2018. Lecture Notes in Computer Science(), vol 11191. Springer, Cham. https://doi.org/10.1007/978-3-030-01768-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01768-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01767-5

  • Online ISBN: 978-3-030-01768-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics