Advertisement

Link Prediction in Multi-layer Networks and Its Application to Drug Design

  • Maksim KoptelovEmail author
  • Albrecht Zimmermann
  • Bruno Crémilleux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11191)

Abstract

Search of valid drug candidates for a given target is a vital part of modern drug discovery. Since the problem was established, a number of approaches have been proposed that augment interaction networks with, typically, two compound/target similarity networks. In this work we propose a method capable of using an arbitrary number of similarity or interaction networks. We adapt an existing method for random walks on heterogeneous networks and show that adding additional networks improves prediction quality.

Keywords

Chemoinformatics Link prediction Multi-layer graphs 

References

  1. 1.
    Buza, K., Peska, L.: ALADIN: a new approach for drug–target interaction prediction. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 322–337. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71246-8_20CrossRefGoogle Scholar
  2. 2.
    Chen, X., Liu, M.X., Yan, G.Y.: Drug-target interaction prediction by random walk on the heterogeneous network. Mol. BioSyst. 8(7), 1970–1978 (2012)CrossRefGoogle Scholar
  3. 3.
    Cheng, F., Zhou, Y., Li, W., Liu, G., Tang, Y.: Prediction of chemical-protein interactions network with weighted network-based inference method. PloS One 7(7), e41064 (2012)CrossRefGoogle Scholar
  4. 4.
    Hattori, M., Okuno, Y., Goto, S., Kanehisa, M.: Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. JACS 125(39), 11853–11865 (2003)CrossRefGoogle Scholar
  5. 5.
    Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive ranking algorithm for web search. TKDE 15(4), 784–796 (2003)Google Scholar
  6. 6.
    Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  7. 7.
    Lim, H., Gray, P., Xie, L., Poleksic, A.: Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem. Sci. Rep. 6, 38860 (2016)CrossRefGoogle Scholar
  8. 8.
    Liu, Y., Zeng, X., He, Z., Zou, Q.: Inferring microrna-disease associations by random walk on a heterogeneous network with multiple data sources. TCBB 14(4), 905–915 (2017)Google Scholar
  9. 9.
    Luo, J., Xiao, Q.: A novel approach for predicting microrna-disease associations by unbalanced bi-random walk on heterogeneous network. J. Biomed. Inform. 66, 194–203 (2017)CrossRefGoogle Scholar
  10. 10.
    Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)CrossRefGoogle Scholar
  11. 11.
    Smith, T., Waterman, M.: Identification of common molecular subsequences. Mol. Biol. 147, 195–197 (1981)CrossRefGoogle Scholar
  12. 12.
    Xie, M., Hwang, T., Kuang, R.: Prioritizing disease genes by bi-random walk. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012. LNCS (LNAI), vol. 7302, pp. 292–303. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30220-6_25CrossRefGoogle Scholar
  13. 13.
    Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., Kanehisa, M.: Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13), i232–i240 (2008)CrossRefGoogle Scholar
  14. 14.
    Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26(12), i246–i254 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Normandie Univ, UNICAEN, ENSICAEN, CNRS - UMR GREYCCaenFrance

Personalised recommendations