Skip to main content

Molecular and Genomic Approaches to Peanut Improvement

  • Chapter
  • First Online:
Pulse Improvement

Abstract

Peanut is a valuable oilseed legume grown throughout tropical and subtropical regions of the world. Genomic advances have been limited in peanut due to the low levels of genetic diversity found in the cultivated gene pool. However, utilization of wild species and new genomic tools are now becoming commonplace among major peanut breeding programs. These tools should accelerate the development of improved cultivars in the near future. This chapter is intended to provide peanut geneticists up-to-date information regarding the genome and molecular breeding tools available for Arachis improvement. It is our hope that the peanut community will utilize this information to continue the progress in diversifying the peanut gene pool and addressing the needs of researchers worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Belamkar V, Selvaraj MG, Ayers JL et al (2010) Identification of SSR markers for drought tolerance-related traits in the U.S. peanut minicore collection using association mapping. Int Cong Leg Genet Genomics

    Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV et al (2016) A novel QTL governing resistance to stem rot disease caused by Sclerotium rolfsii in peanut. Australas Plant Pathol 45:637–644

    Article  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Lopez EJ et al (1998) Advanced backcross QTL analysis in tomato I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Leal-Bertioli SCM, Lion MB et al (2003) A large scale analysis of resistance gene homologues in Arachis. Mol Gen Genomics 270:34

    Article  CAS  Google Scholar 

  • Bi YP, Liu W, Xia H et al (2010) EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome 53:832–839

    Article  CAS  PubMed  Google Scholar 

  • Brasileiro AC, Morgante CV, Araujo ACG et al (2015) Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep 33:1876–1892

    Article  CAS  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–112

    Article  Google Scholar 

  • Burow MD, Simpson CE, Faries MW et al (2009) Molecular biogeography study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119

    Article  CAS  PubMed  Google Scholar 

  • Burow MD, Simpson CE, Starr JL et al (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burow MD, Starr JL, Park C-H et al (2014) Introgression of homologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breeding 34(2):393–406

    Article  CAS  Google Scholar 

  • Chen W, Jiao Y, Cheng L et al (2016) Quantitative trait locus analysis for pod and kernel-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genet 17:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Ren X, Zheng Y et al (2017) Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut. (Arachis hypogaea L) Mol Breed 37(2):17

    Google Scholar 

  • Chenault KD, Maas AL, Damicone JP et al (2009) Discovery and characterization of a molecular marker for Sclerotinia minor (Jagger) resistance in peanut. Euphytica 166:357–365

    Article  CAS  Google Scholar 

  • Choi K, Burow MD, Church G et al (1999) Genetics and mechanism of resistance to Meloidogyne arenaria in peanut germplasm. J Nematol 31:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chopra R, Burow GB, Farmer A, Mudge JM, Simpson CE, Burow MD (2014) Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data. PLoS One 9(12):e115055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra R, Burow G, Simpson CE, Chagoya J, Mudge J, Burow MD (2016) Transcriptome sequencing of diverse Peanut (Arachis) wild species and the cultivated species reveals a wealth of untapped genetic variability. G3-Genes Genomes Genetics 6(12):3825–3836

    Article  PubMed  PubMed Central  Google Scholar 

  • Chopra R, Simpson CE, Hillhouse A et al (2018) SNP genotyping reveals major QTLs for plant architectural traits between A-genome peanut wild species. Mol Genet Genomics. https://doi.org/10.1007/s00438-018-1472-z [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P, (2007) Development of a PCR-Based Molecular Marker to Select for Nematode Resistance in Peanut. Crop Science 47(2):841

    Article  CAS  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C et al (2017a) Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol Plant 10:309–322

    Article  CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Guimaraes LA et al (2017b) Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in Arachis hypogaea and reveals a candidate gene for resistance. Sci Rep 7:1317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook DE, Lee TG, Guo X (2012) Copy number variation of multiple genes at Rgh1 mediates nematode resistance in soybean. Science 338:1206–1209

    Article  CAS  PubMed  Google Scholar 

  • Da Chen, Xin Liu, Chunyu Li, Wei Tian, Qirong Shen, Biao Shen (2014) Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. Journal of Environmental Management 137:120–127

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Zhang ZM, Qin FF et al (2014) Isolation and characterization of drought-responsive genes from peanut roots by suppression subtractive hybridization. Electron J Biotechnol 17:304. https://doi.org/10.1016/j.ejbt.2014.09.004

    Article  CAS  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2014) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC

  • Faye I, Pandey MK, Hamidou F et al (2015) Identification of quantitative trait loci for yield related traits in groundnut (Arachis hypogaea L.) under different water regimes in Niger and Senegal. Euphytica 206:631–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R et al (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R et al (2012a) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R et al (2012b) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7(11):e48642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E et al (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    Article  CAS  PubMed  Google Scholar 

  • Gautami B, Fonceka D, Pandey MK et al (2012a) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS One 7(7):e41213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gautami B, Pandey MK, Vadez V et al (2012b) Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 30:757–772

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes PM, Brasileiro AC, Morgante CV et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genomics 13:387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guimaraes PM, Guimaraes LA, Morgante CV et al (2015) Root transcriptome analysis of wild peanut reveals candidate genes for nematode resistance. PLoS ONE 10(10):e0140937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo B, Chen X, Dang P et al (2008) Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo B, Chen X, Hong Y et al (2009) Analysis of gene expression profiles in leaf tissues of cultivated peanuts and development of EST-SSR markers and gene discovery. Int J Plant Genomics 2009:1. https://doi.org/10.1155/2009/715605

    Article  CAS  Google Scholar 

  • Guo Y, Khanal S, Tang S et al (2012) Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut. BMC Genomics 13:608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hake AN, Shirasawa K, Yadawad A et al (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12(10):e0186113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halward TM, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379–384

    Article  CAS  PubMed  Google Scholar 

  • Holbrook CC, Kvien CK, Ruker KS et al (2000) Pre-harvest aflatoxin contamination in drought-tolerant and drought-intolerant peanut genotypes. Peanut Sci 27:45–48

    Article  CAS  Google Scholar 

  • Holbrook CC, Timper P, Culbreath AK et al (2008a) Registration of ‘Tifguard’ peanut. J Plant Reg 2:92–94

    Article  Google Scholar 

  • Holbrook CC, Timper P, Dong W et al (2008b) Development of near-isogenic peanut lines with and without resistance to the peanut root-knot nematode. Crop Sci 48:194–198

    Article  Google Scholar 

  • Hong Y, Chen X, Liang X et al (2010) A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, He H, Chen W et al (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128:1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y et al (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ah FAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–221

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Huang L, Ren X (2014) Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini-core collection. J Integr Plant Biol 56:159–169

    Article  PubMed  Google Scholar 

  • Jung S, Powell G, Moore K et al (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.] II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811

    Article  CAS  PubMed  Google Scholar 

  • Khedikar YP, Gowda MVC, Sarvamangala C et al (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khera P, Pandey MK, Wang H et al (2016) Mapping quantitative trait loci resistance to Tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE 11(7): e0158452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knauft DA, Ozias-Akins P (1995) Recent methodologies for germplasm enhancement and breeding. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, pp 54–94

    Google Scholar 

  • Kochert G, Halward T, Branch W et al (1991) RFLP variation in peanuts (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M et al (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Korani WA, Chu Y, Holbrook C et al (2017) Genotypic regulation of aflatoxin accumulation but not Aspergillus fungal growth upon post-harvest infection of peanut (Arachis hypogaea L.) seeds. Toxins 9:218

    Article  PubMed Central  CAS  Google Scholar 

  • Krapovickas A, Fernandez A, Seeligmann P (1974) Recuperacion de la fertilidaden un hiberido interspecifico esteril de Arachis (Leguminosae). Bonplandia Corrientes 3:129–142

    Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lavia GI (1996) Estudios cromosomicos en Arachis (Leguminosae). Bonplandia 9:111–120

    Google Scholar 

  • Leal-Bertioli SCM, Bertioli DJ, Guimaraes PM et al (2012) The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environ Exp Bot 84:17–24

    Article  Google Scholar 

  • Leal-Bertioli SCM, Cavalcante U, Gouveia EG et al (2015) Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker assisted selection. G3 (Bethesda) 5(7):1403–1413

    Article  CAS  Google Scholar 

  • Leal-Bertioli SCM, Jose ACVF, Alves-Freitas DMT et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9:112–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Li L, Zhang X et al (2017) QTL mapping and marker analysis of main stem height and first lateral branch length in peanut (Arachis hypogaea L.). Euphytica 213:57

    Article  CAS  Google Scholar 

  • Liang Y, Baring MR, Wang S et al (2017) Mapping QTLs for leafspot resistance in peanut using SNP-based next-generation sequencing markers. Plant Breed Biotech 5(2):115–122

    Article  Google Scholar 

  • Liu Z, Feng S, Pandey MK et al (2013) Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. J Integr Plant Biol 55:453–461

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Kandoth PK, Warren SD et al (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Liu S, Zhou R, Dong Y et al (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360–1373

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Li H, Hong Y et al (2018) Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci 9:604. https://doi.org/10.3389/fpls.2018.00604

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo H, Ren X, Li Z et al (2017) Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics 18:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch RE, Wilson DM (1991) Enhanced infection of peanut, Arachis hypogaea L., seeds with Aspergillus flavus group fungi due to external scarification of peanut pods by the lesser cornstalk borer, Elasmopalpuslignosellus (Zeller). Peanut Sci 18:110–116

    Article  Google Scholar 

  • Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT et al (2009) A linkage map for the B genome of Arachis(Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K et al (2005) Microsatellite-based gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111:1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Milla S, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–117

    Article  CAS  PubMed  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J et al (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine-rich repeat family of plant genes. Plant Cell 10:1307–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore KM, Knauft DA (1989) The inheritance of high oleic acid in peanut. J Hered 80:252–253

    Article  Google Scholar 

  • Mondal S, Hadapad AB, Hande PA et al (2014a) Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973

    Article  CAS  Google Scholar 

  • Mondal S, Phadke RR, Bradigannavar AM (2014b) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol 162:548–552

    Article  CAS  Google Scholar 

  • Nagy ED, Chu Y, Guo Y et al (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode gene. Mol Breed 26:357–370

    Article  CAS  Google Scholar 

  • Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, Zhang D, Khanal S, Heesacker AF, Khalilian N, Farmer AD, Carrasquilla-Garcia N, Penmetsa RV, Cook D, Stalker HT, Nielsen N, Ozias-Akins P, Knapp SJ, (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13(1):469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam SN, Aruna R (2008) Improving breeding efficiency for early maturity in peanut. Plant Breed Rev 30:295–322

    Google Scholar 

  • Nigam SM, Waliyar F, Aruna R et al (2009) Breeding for resistance to aflatoxin contamination at ICRISAT. Peanut Sci 36:42–49

    Article  Google Scholar 

  • Nwokolo E (1996) Peanut (Arachis hypogaea L.). In: Nwokolo E, Smartt J (eds) Food and feed from legumes and oilseeds. Chapman & Hall, London, pp 49–61

    Chapter  Google Scholar 

  • Pandey MK, Khan AW, Singh VK et al (2017a) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J 15:927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Wang H, Khera P et al (2017b) Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci 8:25

    PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A et al (2014a) Genome wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9:e105228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey MK, Wang ML, Qiao L et al (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng Z, Liu F, Wang L et al (2017) Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Sci Rep 7:40066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura JB (1996) Drought and drought tolerance. Plant Growth Regul 20:79–83

    Article  CAS  Google Scholar 

  • Pimratch S, Jogloy S, Toomsan B et al (2004) Evaluation of seven peanut genotypes for nitrogen fixation and agronomic traits. Songklanakarin J SciTechnol 2:295–304

    Google Scholar 

  • Qin H, Feng S, Chen C et al (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664

    Article  PubMed  Google Scholar 

  • Ratnaparkhe MB, Wang X, Li J (2011) Comparative analysis of peanut NBS-LRR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytol 192:164–178

    Article  PubMed  Google Scholar 

  • Ravi K, Vadez V, Isobe S (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Robledo G, Seijo JG (2008) Characterization of Arachis D genome by FISH chromosome markers and total genome DNA hybridization. Genet Mol Biol 31:717–724

    Article  CAS  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Research 122(1):49–59

    Article  Google Scholar 

  • Selvaraj MG, Belamkar V, Ayers JL et al (2010) Variability for drought resistance traits in U.S. minicore collection of peanut. In: Plant breeding for drought adaptation symposium. Colorado State University, CO, June 2010

    Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK et al (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 20:309

    Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandy MK et al (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Bertioli DJ, Varshney RK et al (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of legume genomes. DNA Res 20:173–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K et al (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26

    Article  Google Scholar 

  • Simpson CE, Starr JL (2001) Registration of ‘COAN’ peanut. Crop Sci 41:918

    Article  Google Scholar 

  • Simpson CE, Starr JL, Baring MR et al (2013) Registration of ‘Webb’ Peanut. Journal of Plant Research. 7:265–268

    Article  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J. (eds) The Groundnut Crop. World Crop Series. Springer, Dordrecht

    Chapter  Google Scholar 

  • Simpson CE, Starr JL, Church GT (2003) Registration of ‘NemaTAM’ peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Smartt L, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young ET (eds) Peanut science and technology. American Peanut Research and Education Society, Yoakum, pp 21–49

    Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT (2017) Utilizing wild species for peanut improvement. Crop Sci 57:1102–1120

    Article  Google Scholar 

  • Subrahmanyam P, McDonald D, Reddy U et al (1993) Origin and utilization of rust resistance in groundnut. In: Jacobs T, Parlevliet JE (eds) Durability of disease resistance. Kluwer Academic Publishers, Dordrecht, pp 147–158

    Chapter  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR et al (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Tallury SP, Hollowell JE, Isleib TG et al (2014) Greenhouse evaluation of section Arachis wild species for Sclerotinia blight and Cylindrocladium black rot resistance. Peanut Sci 41:17–24

    Article  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advance backcross QTL analysis: a method for the transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Thakur RP, Rao VP, Reddy SV et al (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and aflatoxin production by Aspergillus flavus. Int Arachis Newsl 2000:44–46

    Google Scholar 

  • Tian F, Li DJ, Fu Q et al (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  • Timper P, Wilson DM, Holbrook CC et al (2004) Relationship between Meloidogyne arenaria and aflatoxin contamination in peanut. J Nematol 36:167–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD (2005) Variability in drought resistance related traits in the mini core collection of peanut. Crop Sci 45:1432–1440

    Article  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia 14(1&2):35–64

    Google Scholar 

  • Varshney RK, Dubey A (2009) Novel genetic tools and modern genetic breeding approaches for crop improvement. J Plant Biochem Biotechnol 182:127–138

    Article  Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics 118 (4):729–739

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ML, Khera P, Pandey MK et al (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthase pathway in peanut (Arachis hypogaea L.). PLoS One 10(4):e0119454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Penmetsa RP, Yuan M (2012) Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JN, Chopra R, Baring MR et al (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Tropical Plant Biol 10:1. https://doi.org/10.1007/s12042-016-9-180-5

    Article  CAS  Google Scholar 

  • Wynne JC, Rowe RC, Beute MK (1975) Resistance of peanut genotypes to Cylindrocladium crotalariae. Peanut Sci 2:54–56

    Article  Google Scholar 

  • Xue HQ, Isleib TG, Payne GA et al (2004) Evaluation of post-harvest aflatoxin production in peanut germplasm with resistance to seed colonization and pre-harvest aflatoxin contamination. Peanut Sci 31:124–134

    Article  CAS  Google Scholar 

  • Yuksel B, Estill JC, Schulze SR et al (2005) Organization and evolution of resistance gene analogs in peanut. Mol Gen Genomics 274:248–263

    Article  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001) Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. TAG Theoretical and Applied Genetics 103(1):19–29

    Article  CAS  Google Scholar 

  • Zhanji Liu, Suping Feng, Manish K. Pandey, Xiaoping Chen, Albert K. Culbreath, Rajeev K. Varshney, Baozhu Guo (2013) Identification of Expressed Resistance Gene Analogs from Peanut (L.) Expressed Sequence Tags. Journal of Integrative Plant Biology 55(5):453–461

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Huang L, Ren X et al (2017) Genetic variation and association mapping of seed-related traits in cultivated peanut (Arachis hypogaea L.) using single-locus simple sequence repeat markers. Front Plant Sci 8:2105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, J.N., Chopra, R. (2018). Molecular and Genomic Approaches to Peanut Improvement. In: Wani, S., Jain, M. (eds) Pulse Improvement. Springer, Cham. https://doi.org/10.1007/978-3-030-01743-9_3

Download citation

Publish with us

Policies and ethics