Skip to main content

Agent-Based Security Constrained Optimal Power Flow with Primary Frequency Control

  • Conference paper
  • First Online:
Multi-Agent Systems and Agreement Technologies (EUMAS 2017, AT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10767))

  • 688 Accesses

Abstract

We propose in this paper a distributed method to solve the security constrained optimal power flow problem (SCOPF) that considers not only contingencies on transmission lines but also on generators. With this aim, we extend the formulation of the SCOPF problem to consider the primary frequency response of generators as well as the short term constraints of generators and transmission lines. Then, we distribute the problem among different agents and we use a decentralized decision making algorithm, based on the Alternating Direction Method of Multipliers (ADMM), to optimize the grid power supply while being resilient to violations that would occur during contingencies. Finally, we validate the effectiveness of our approach on a simple test system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation 13 is a projection on an hyperplane.

References

  1. Bornard, P., Pavard, M.: Réseaux d’interconnexion et de transport: réglages et stabilité. Technival report, Téchniques de l’ingénieur (1993). http://www.techniques-ingenieur.fr/base-documentaire/energies-th4/reseaux-electriques-de-transport-et-de-repartition-42263210/reseaux-d-interconnexion-et-de-transport-reglages-et-stabilite-d4092/

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    Article  MATH  Google Scholar 

  3. Capitanescu, F., et al.: State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electr. Power Syst. Res. 81(8), 1731–1741 (2011)

    Article  Google Scholar 

  4. Chakrabarti, S., Kraning, M., Chu, E., Baldick, R., Boyd, S.: Security Constrained Optimal Power Flow via proximal message passing. In: 2014 Clemson University Power Systems Conference, pp. 1–8 (2014). https://doi.org/10.1109/PSC.2014.6808131. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6808131

  5. Elsayed, W.T., El-Saadany, E.F.: A fully decentralized approach for solving the economic dispatch problem. IEEE Trans. Power Syst. 30(4), 2179–2189 (2015). https://doi.org/10.1109/TPWRS.2014.2360369

    Article  Google Scholar 

  6. Karoui, K., Crisciu, H., Platbrood, L.: Modeling the primary reserve allocation in preventive and curative security constrained OPF. In: 2010 IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–6. IEEE (2010)

    Google Scholar 

  7. Kraning, M., Chu, E., Lavaei, J., Boyd, S.P.: Dynamic network energy management via proximal message passing. Found. Trends Optim. 1(2), 73–126 (2014)

    Article  Google Scholar 

  8. Monticelli, A., Pereira, M.V.F., Granville, S.: Security-constrained optimal power flow with post-contigency corrective rescheduling. IEEE Trans. Power Syst. 2(1), 175–180 (1987)

    Article  Google Scholar 

  9. Phan, D.T., Sun, X.A.: Minimal impact corrective actions in security-constrained optimal power flow via sparsity regularization. IEEE Trans. Power Syst. 30(4), 1947–1956 (2015)

    Article  Google Scholar 

  10. Pinar, A., Meza, J., Donde, V., Lesieutre, B.: Optimization strategies for the vulnerability analysis of the electric power grid. SIAM J. Optim. 20(4), 1786–1810 (2010)

    Article  MathSciNet  Google Scholar 

  11. Scott, P., Thiébaux, S.: Distributed multi-period optimal power flow for demand response in microgrids. In: Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, e-Energy 2015, Bangalore, India, 14–17 July 2015, pp. 17–26 (2015)

    Google Scholar 

  12. Wang, Y., Wang, S., Wu, L.: Distributed optimization approaches for emerging power systems operation: a review. Electr. Power Syst. Res. 144, 127–135 (2017). http://dx.doi.org/10.1016/j.epsr.2016.11.025

    Article  Google Scholar 

  13. Zhang, Z., Chow, M.Y.: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans. Power Syst. 27, 1761–1768 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Meritxell Vinyals would like to acknowledge the support of the European Union under the FP7 Grant Agreement no. 619682 (MAS2TERING project) and under the H2020 Grant Agreement no. 774431 (DRIVE project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Velay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velay, M., Vinyals, M., Bésanger, Y., Retière, N. (2018). Agent-Based Security Constrained Optimal Power Flow with Primary Frequency Control. In: Belardinelli, F., Argente, E. (eds) Multi-Agent Systems and Agreement Technologies. EUMAS AT 2017 2017. Lecture Notes in Computer Science(), vol 10767. Springer, Cham. https://doi.org/10.1007/978-3-030-01713-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01713-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01712-5

  • Online ISBN: 978-3-030-01713-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics