Skip to main content

Music and Musical Sonification for the Rehabilitation of Parkinsonian Dysgraphia: Conceptual Framework

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11265))

Abstract

Music has been shown to enhance motor control in patients with Parkinson’s disease (PD). Notably, musical rhythm is perceived as an external auditory cue that helps PD patients to better control movements. The rationale of such effects is that motor control based on auditory guidance would activate a compensatory brain network that minimizes the recruitment of the defective pathway involving the basal ganglia. Would associating music to movement improve its perception and control in PD? Musical sonification consists in modifying in real-time the playback of a preselected music according to some movement parameters. The validation of such a method is underway for handwriting in PD patients. When confirmed, this study will strengthen the clinical interest of musical sonification in motor control and (re)learning in PD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008)

    Article  Google Scholar 

  2. Dalla Bella, S., Benoit, C.-E., Farrugia, N., Schwartze, M., Kotz, S.A.: Effects of musically cued gait training in Parkinson’s disease: beyond a motor benefit: auditory cueing in Parkinson’s disease. Ann. N. Y. Acad. Sci. 1337, 77–85 (2015)

    Article  Google Scholar 

  3. Rodger, M.W.M., Craig, C.M.: Beyond the metronome: auditory events and music may afford more than just interval durations as gait cues in Parkinson’s disease. Front. Neurosci. 10, 272 (2016)

    Article  Google Scholar 

  4. Nieuwboer, A., Rochester, L., Müncks, L., Swinnen, S.P.: Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat. Disord. 15, S53–S58 (2009)

    Article  Google Scholar 

  5. Benoit, C.-E., Dalla Bella, S., Farrugia, N., Obrig, H., Mainka, S., Kotz, S.A.: Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front. Hum. Neurosci. 8, 494 (2014)

    Article  Google Scholar 

  6. de Bruin, N., Doan, J.B., Turnbull, G., Suchowersky, O., Bonfield, S., Hu, B., Brown, L.A.: Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Park. Dis. 2010, 1–9 (2010)

    Article  Google Scholar 

  7. Chen, P.-H., Liou, D.-J., Liou, K.-C., Liang, J.-L., Cheng, S.-J., Shaw, J.-S.: Walking turns in Parkinson’s disease patients with freezing of gait: the short-term effects of different cueing strategies. Int. J. Gerontol. 10, 71–75 (2016)

    Article  Google Scholar 

  8. Dalla Bella, S., Benoit, C.-E., Farrugia, N., Keller, P.E., Obrig, H., Mainka, S., Kotz, S.A.: Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 7, 42005 (2017)

    Article  Google Scholar 

  9. Delval, A., Defebvre, L., Tard, C.: Freezing during tapping tasks in patients with advanced Parkinson’s disease and freezing of gait. PLoS ONE 12, e0181973 (2017)

    Article  Google Scholar 

  10. Hackney, M., Earhart, G.: Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. J. Rehabil. Med. 41, 475–481 (2009)

    Article  Google Scholar 

  11. Hackney, M.E., Earhart, G.M.: Health-related quality of life and alternative forms of exercise in Parkinson disease. Parkinsonism Relat. Disord. 15, 644–648 (2009)

    Article  Google Scholar 

  12. Harro, C., et al..: The effects of speed-dependent treadmill training and rhythmic auditory-cued overground walking on gait function and fall risk in individuals with idiopathic Parkinson’s disease: a randomized controlled trial. NeuroRehabilitation 557–572 (2014)

    Google Scholar 

  13. Ledger, S., Galvin, R., Lynch, D., Stokes, E.K.: A randomised controlled trial evaluating the effect of an individual auditory cueing device on freezing and gait speed in people with Parkinson’s disease. BMC Neurol. 8, 46 (2008)

    Article  Google Scholar 

  14. Lee, S.J., Yoo, J.Y., Ryu, J.S., Park, H.K., Chung, S.J.: The effects of visual and auditory cues on freezing of gait in patients with Parkinson disease. Am. J. Phys. Med. Rehabil. 91, 2–11 (2012)

    Article  Google Scholar 

  15. Lopez, W.O.C., Higuera, C.A.E., Fonoff, E.T., de Oliveira Souza, C., Albicker, U., Martinez, J.A.E.: Listenmee and Listenmee smartphone application: Synchronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum. Mov. Sci. 37, 147–156 (2014)

    Article  Google Scholar 

  16. Rochester, L., Burn, D.J., Woods, G., Godwin, J., Nieuwboer, A.: Does auditory rhythmical cueing improve gait in people with Parkinson’s disease and cognitive impairment? A feasibility study. Mov. Disord. 24, 839–845 (2009)

    Article  Google Scholar 

  17. Young, W.R., Rodger, M.W., Craig, C.M.: Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson’s disease patients. Neuropsychologia 57, 140–153 (2014)

    Article  Google Scholar 

  18. Young, W.R., Shreve, L., Quinn, E.J., Craig, C., Bronte-Stewart, H.: Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia 87, 54–62 (2016)

    Article  Google Scholar 

  19. Baram, Y., Aharon-Peretz, J., Badarny, S., Susel, Z., Schlesinger, I.: Closed-loop auditory feedback for the improvement of gait in patients with Parkinson’s disease. J. Neurol. Sci. 363, 104–106 (2016)

    Article  Google Scholar 

  20. Carpinella, I., et al.: Wearable sensor-based biofeedback training for balance and gait in Parkinson disease: a pilot randomized controlled trial. Arch. Phys. Med. Rehabil. 98, 622–630.e3 (2017)

    Article  Google Scholar 

  21. Ginis, P., et al.: External input for gait in people with Parkinson’s disease with and without freezing of gait: one size does not fit all. J. Neurol. 264, 1488–1496 (2017)

    Article  Google Scholar 

  22. Lohnes, C.A., Earhart, G.M.: The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait Posture 33, 478–483 (2011)

    Article  Google Scholar 

  23. Ringenbach, S.D.R., van Gemmert, A.W.A., Shill, H.A., Stelmach, G.E.: Auditory instructional cues benefit unimanual and bimanual drawing in Parkinson’s disease patients. Hum. Mov. Sci. 30, 770–782 (2011)

    Article  Google Scholar 

  24. Studer, V., et al.: Treadmill training with cues and feedback improves gait in people with more advanced Parkinson’s disease. J. Park. Dis. 7, 729–739 (2017)

    Google Scholar 

  25. Welch, R.B., Warren, D.H.: Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88, 638 (1980)

    Article  Google Scholar 

  26. Schmidt, R., Lee, T.: Motor Learning and performance, 5E with web study guide: from principles to application. Human Kinetics (2013)

    Google Scholar 

  27. Nackaerts, E., Vervoort, G., Heremans, E., Smits-Engelsman, B.C.M., Swinnen, S.P., Nieuwboer, A.: Relearning of writing skills in Parkinson’s disease: a literature review on influential factors and optimal strategies. Neurosci. Biobehav. Rev. 37, 349–357 (2013)

    Article  Google Scholar 

  28. McIntosh, G.C., Brown, S.H., Rice, R.R., Thaut, M.H.: Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62, 22–26 (1997)

    Article  Google Scholar 

  29. Atkinson-Clement, C., Sadat, J., Pinto, S.: Behavioral treatments for speech in Parkinson’s disease: meta-analyses and review of the literature. Neurodegener. Dis. Manag. 5, 233–248 (2015)

    Article  Google Scholar 

  30. Fujii, S., Wan, C.Y.: The role of rhythm in speech and language rehabilitation: the SEP hypothesis. Front. Hum. Neurosci. 8, 777 (2014)

    Google Scholar 

  31. Zatorre, R.J., Chen, J.L., Penhune, V.B.: When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci. 8, 547–558 (2007)

    Article  Google Scholar 

  32. Mainka, S.: Music stimulates muscles, mind, and feelings in one go. Front. Psychol. 6, 1547 (2015)

    Article  Google Scholar 

  33. Satoh, M., Kuzuhara, S.: Training in mental singing while walking improves gait disturbance in Parkinson’s disease patients. Eur. Neurol. 60, 237–243 (2008)

    Article  Google Scholar 

  34. Wittwer, J.E., Webster, K.E., Hill, K.: Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 37, 219–222 (2013)

    Article  Google Scholar 

  35. Sihvonen, A.J., Särkämö, T., Leo, V., Tervaniemi, M., Altenmüller, E., Soinila, S.: Music-based interventions in neurological rehabilitation. Lancet Neurol. 16, 648–660 (2017)

    Article  Google Scholar 

  36. Doyon, J., Benali, H.: Reorganization and plasticity in the adult brain during learning of motor skills. Curr. Opin. Neurobiol. 15, 161–167 (2005)

    Article  Google Scholar 

  37. Doyon, J., et al.: Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75 (2009)

    Article  Google Scholar 

  38. Pinto, S., et al.: Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson’s disease. Mov. Disord. 26, 2212–2219 (2011)

    Article  Google Scholar 

  39. Nombela, C., Hughes, L.E., Owen, A.M., Grahn, J.A.: Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37, 2564–2570 (2013)

    Article  Google Scholar 

  40. Berardelli, A., Rothwell, J.C., Thompson, P.D., Hallett, M.: Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146 (2001)

    Article  Google Scholar 

  41. Schneider, J.S., Diamond, S.G., Markham, C.H.: Parkinson’s disease: sensory and motor problems in arms and hands. Neurology 37, 951 (1987)

    Article  Google Scholar 

  42. Klockgether, T., Borutta, M., Rapp, H., Spieker, S., Dichgans, J.: A defect of kinesthesia in Parkinson’s disease. Mov. Disord. 10, 460–465 (1995)

    Article  Google Scholar 

  43. Ondo, W.G., Satija, P.: Withdrawal of visual feedback improves micrographia in Parkinson’s disease. Mov. Disord. 22, 2130–2131 (2007)

    Article  Google Scholar 

  44. Klockgether, T., Dichgans, J.: Visual control of arm movement in Parkinson’s disease. Mov. Disord. 9, 48–56 (1994)

    Article  Google Scholar 

  45. Longstaff, M.G., Mahant, P.R., Stacy, M.A., Van Gemmert, A.W., Leis, B.C., Stelmach, G.E.: Discrete and dynamic scaling of the size of continuous graphic movements of parkinsonian patients and elderly controls. J. Neurol. Neurosurg. Psychiatry 74, 299–304 (2003)

    Article  Google Scholar 

  46. Chiviacowsky, S., Wulf, G.: Feedback after good trials enhances learning. Res. Q. Exerc. Sport 78, 40–47 (2007)

    Article  Google Scholar 

  47. Turner, R.S., Desmurget, M.: Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010)

    Article  Google Scholar 

  48. Foerde, K., Shohamy, D.: The role of the basal ganglia in learning and memory: insight from Parkinson’s disease. Neurobiol. Learn. Mem. 96, 624–636 (2011)

    Article  Google Scholar 

  49. Nombela, C., Rae, C.L., Grahn, J.A., Barker, R.A., Owen, A.M., Rowe, J.B.: How often does music and rhythm improve patients’ perception of motor symptoms in Parkinson’s disease? J. Neurol. 260, 1404–1405 (2013)

    Article  Google Scholar 

  50. Margolin, D.I., Wing, A.M.: Agraphia and micrographia: clinical manifestations of motor programming and performance disorders. Acta Psychol. (Amst.) 54, 263–283 (1983)

    Article  Google Scholar 

  51. Lewitt, P.A.: Micrographia as a focal sign of neurological disease. J. Neurol. Neurosurg. Psychiatry 46, 1152 (1983)

    Article  Google Scholar 

  52. Phillips, J.G., Stelmach, G.E., Teasdale, N.: What can indices of handwriting quality tell us about Parkinsonian handwriting? Hum. Mov. Sci. 10, 301–314 (1991)

    Article  Google Scholar 

  53. McLennan, J.E., Nakano, K., Tyler, H.R., Schwab, R.S.: Micrographia in Parkinson’s disease. J. Neurol. Sci. 15, 141–152 (1972)

    Article  Google Scholar 

  54. Van Gemmert, A.W.A., Teulings, H.-L., Contreras-Vidal, J.L., Stelmach, G.E.: Parkinsons disease and the control of size and speed in handwriting. Neuropsychologia 37, 685–694 (1999)

    Article  Google Scholar 

  55. Letanneux, A., Danna, J., Velay, J.-L., Viallet, F., Pinto, S.: From micrographia to Parkinson’s disease dysgraphia: Parkinson’s disease dysgraphia. Mov. Disord. 29, 1467–1475 (2014)

    Article  Google Scholar 

  56. Pinto, S., Velay, J.-L.: Handwriting as a marker for PD progression: a shift in paradigm. Neurodegener. Dis. Manag. 5, 367–369 (2015)

    Article  Google Scholar 

  57. Plamondon, R.: A kinematic theory of rapid human movements, Part I. Biol. Cybern. 73, 295–307 (1995)

    Article  Google Scholar 

  58. Grossberg, S., Paine, R.W.: A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw. 13, 999–1046 (2000)

    Article  Google Scholar 

  59. Berardelli, A., et al.: Single–joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 119, 661–674 (1996)

    Article  Google Scholar 

  60. Swett, B.A., et al.: Neural substrates of graphomotor sequence learning: a combined fMRI and kinematic study. J. Neurophysiol. 103, 3366–3377 (2010)

    Article  Google Scholar 

  61. Nieuwboer, A., Vercruysse, S., Feys, P., Levin, O., Spildooren, J., Swinnen, S.: Upper limb movement interruptions are correlated to freezing of gait in Parkinson’s disease. Eur. J. Neurosci. 29, 1422–1430 (2009)

    Article  Google Scholar 

  62. Oliveira, R.M., Gurd, J.M., Nixon, P., Marshall, J.C., Passingham, R.E.: Micrographia in Parkinson’s disease: the effect of providing external cues. J. Neurol. Neurosurg. Psychiatry 63, 429–433 (1997)

    Article  Google Scholar 

  63. Bryant, M., Rintala, D., Lai, E., Protas, E.: An investigation of two interventions for micrographia in individuals with Parkinson’s disease. Clin. Rehabil. 24, 1021–1026 (2010)

    Article  Google Scholar 

  64. Contreras-Vidal, J.L., Teulings, H.-L., Stelmach, G.E., Adler, C.H.: Adaptation to changes in vertical display gain during handwriting in Parkinson’s disease patients, elderly and young controls. Parkinsonism Relat. Disord. 9, 77–84 (2002)

    Article  Google Scholar 

  65. Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., Adler, C.H.: Adaptation of handwriting size under distorted visual feedback in patients with Parkinson’s disease and elderly and young controls. J. Neurol. Neurosurg. Psychiatry 72, 315–324 (2002)

    Article  Google Scholar 

  66. Swinnen, S.P., Steyvers, M., Van Den Bergh, L., Stelmach, G.E.: Motor learning and Parkinson’s disease: refinement of within-limb and between-limb coordination as a result of practice. Behav. Brain Res. 111, 45–59 (2000)

    Article  Google Scholar 

  67. Wulf, G., Landers, M., Lewthwaite, R., Toöllner, T.: External focus instructions reduce postural instability in individuals with Parkinson disease. Phys. Ther. 89, 162–168 (2016)

    Article  Google Scholar 

  68. Jankovic, J.: Pathophysiology and clinical assessment of motor symptoms in Parkinson’s disease. Handb. Park, Dis (1987)

    Google Scholar 

  69. Bangert, M., et al.: Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage 30, 917–926 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants ANR-16-CONV-0002 (ILCB), ANR-11-LABX-0036 (BLRI), and ANR-11-IDEX-0001-02 (AMIDEX) the Excellence Initiative of Aix-Marseille University. We want to thank Richard Kronland-Martinet, Sølvi Ystad and Mitsuko Aramaki (laboratory PRISM), as well as Charles Gondre for the technical development related to the musical sonification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Danna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Véron-Delor, L., Pinto, S., Eusebio, A., Velay, JL., Danna, J. (2018). Music and Musical Sonification for the Rehabilitation of Parkinsonian Dysgraphia: Conceptual Framework. In: Aramaki, M., Davies , M., Kronland-Martinet, R., Ystad, S. (eds) Music Technology with Swing. CMMR 2017. Lecture Notes in Computer Science(), vol 11265. Springer, Cham. https://doi.org/10.1007/978-3-030-01692-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01692-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01691-3

  • Online ISBN: 978-3-030-01692-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics