Optimizing Turbo Codes for Secret Key Generation in Vehicular Ad Hoc Networks

Conference paper
Part of the Advances in Science, Technology & Innovation book series (ASTI)


We present an algorithm that allows two users to establish a symmetric cryptographic key by incorporating the most important features of the wireless channel in vehicle-to-vehicle (V2V) communication. Non-reciprocity compensation is combined with turbo codes (TCs) for error reconciliation purposes. For fair comparisons, the indexing technique is applied in conjunction with the non-reciprocity compensation technique. A series of simulations are run to calculate key performance indicators (KPIs). High entropy values are obtained throughout all rounds of simulation during the key extraction process. Furthermore, simulation results indicate a significant improvement in bit mismatch rate (BMR) and key generation rate (KGR) when TCs are used. Increasing the number of iterations in the TC can significantly improve the Bit Error Rate (BER), thus generating more symmetric keys. The key generation rate was reported high ranging from 17 to 19 for the 256-bit symmetric keys per minute with TCs, while it is ranging from 2 to 5 when compared with a sample indexing technique published in the public domain. Finally, simulations proved also improvements for different key lengths as part of the error reconciliation process when TCs are used with an almost regular permutation (ARP) instead of a random permutation.


Almost regular permutation Bit mismatch rate Entropy Error reconciliation Key generation Quantization Scatterers’ mobility Thresholding Turbo codes VANET 


  1. 1.
    Robshaw, M.J.B., Billet, O.: New Stream Cipher Designs—The eSTREAM Finalists, vol. 4986. Series Lecture Notes in Computer Science. Springer (2008)Google Scholar
  2. 2.
    Jha, N.K., Raghunathan, A., Potlapally, N.R., Ravi, S.: A study of the energy consumption characteristics of cryptographic algorithms and security protocols. IEEE Trans. Mobile Comput. 5(undefined), 128–143 (2006)Google Scholar
  3. 3.
    Mukherjee, S.A., Fakoorian, A., Huang, J., Swindlehurst, A.L.: Principles of physical layer security in multiuser wireless networks: a survey. CoRR, vol. abs/1011.3754 (2010) [Online]. Available:
  4. 4.
    Shehadeh, Y.E.H., Hogrefe, D.: A survey on secret key generation mechanisms on the physical layer in wireless networks. Sec. Commun. Netw. 8(2), 332–341 (2015, Jan) [Online]. Available:
  5. 5.
    Qu, Z., Wu, F., Wang, Y., Cho, W.: A security and privacy review of vanets. IEEE Trans. Intell. Transp. Syst. 16(6), 2985–2996 (2015)CrossRefGoogle Scholar
  6. 6.
    Karadimas, P., Matolak, D.W.: Generic stochastic modeling of vehicle-to-vehicle wireless channels. Veh. Comm. 1(4), 153–167 (2014) [Online]. Available:
  7. 7.
    Liu, H., Wang, Y., Yang, J., Chen, Y.: Fast and practical secret key extraction by exploiting channel response. INFOCOM. IEEE, 3048–3056 (2013)Google Scholar
  8. 8.
    Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Secret Key Extraction from Level Crossings over Unauthenticated Wireless Channels, pp. 201–230. Springer, US (2010) [Online]. Available: Scholar
  9. 9.
    Brassard, G., Salvail, L.: Secret-Key Reconciliation by Public Discussion, pp. 410–423. Eurocrypt ‘93. Springer (1993) [Online]. Available:
  10. 10.
    Buttler, W.T., Lamoreaux, S.K., Torgerson, J.R., Nickel, G.H., Donahue, C.H., Peterson, C.G.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67, 052303 (2003, May) [Online]. Available:
  11. 11.
    Martınez-Mateo, J., Elkouss, D., Martin, V.: Blind reconciliation. Q. Inf. Comput. 12(9–10), 791–812, (2012) [Online]. Available:
  12. 12.
    Martınez-Mateo, J., Elkouss, D., Martn, V.: Interactive reconciliation with low-density parity-check codes. In: 6th International Symposium on Turbo Codes Iterative Information Processing, pp. 270–274 (2010, Sep)Google Scholar
  13. 13.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo-codes. In Proceeding of ICC ‘93, Geneva, Switzerland, vol. 2, pp. 1064–1070 (1993, May)Google Scholar
  14. 14.
    Benedetto, S., Divsalar, D., Montorsi, G., Pollara, F.: Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding. IEEE Trans. Inf. Theory 44(3), 909–926 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Benedetto, S., Montorsi, D.: Iterative decoding of serially concatenated convolutional codes. Electron. Lett. 32(13), 1186–1188 (1996)CrossRefGoogle Scholar
  16. 16.
    Benedetto, S., Montorsi, D.: Serial concatenation of block and convolutional codes. Electron. Lett. 32(10), 887–888 (1996)CrossRefGoogle Scholar
  17. 17.
    Pyndiah, R.M.: Near-optimum decoding of product codes: block turbo codes. IEEE Trans. Comm. 46(8), 1003–1010 (1998)CrossRefGoogle Scholar
  18. 18.
    Nguyen, K., Assche, G.V., Cerf, N.J.: Side-information coding with turbo codes and its application to quantum key distribution. CoRR, vol. cs.IT/0406001 (2004) [Online]. Available:
  19. 19.
    Benletaief, N., Rezig, H., Bouallegue, A.: Toward efficient quantum key distribution reconciliation. J. Q. Inf. Sci. (2014)Google Scholar
  20. 20.
    Yeo, E., Anantharam, V.: Iterative decoder architectures. IEEE Commun. Mag. 41(8), 132–140 (2003)CrossRefGoogle Scholar
  21. 21.
    Kiokes, G., Economakos, G., Amditis, A., Uzunoglu, N.K.: A comparative study of IEEE 802.11 p physical layer coding schemes and FPGA implementation for inter vehicle communications. Mod. Traffic Transp. Eng. Res. 2(2), 95–102 (2013)Google Scholar
  22. 22.
    Hirschausen, P., Davis, L., Haley D., Lever, K.: Identify key design parameters for Monte Carlo simulation of Doppler Spread channels. In: Communications Theory Workshop (AusCTW), Sydney (2014)Google Scholar
  23. 23.
    Hoecher, P.: A statistical discrete-time model for the WSSUS multipath channel. IEEE Trans. Veh. Tech. 41(4) (1992)Google Scholar
  24. 24.
    T. Synchronization and C. Coding. Recommendation for Space Data System Standards. Technical report, CCSDS 131.0-B-1. Blue BookGoogle Scholar
  25. 25.
    Third Generation Partnership Project (3GPP) Technical Speciation Group, Multiplexing and channel coding (FDD), TS 25.212, v2.0.0. (June 1999)Google Scholar
  26. 26.
    DVB, Interaction channel for satellite distribution systems, ETSI EN 301 790, v. 1.2.2. (2000)Google Scholar
  27. 27.
    DVB, Interaction channel for digital terrestrial television, ETSI EN 301 958, v. 1.1.1. (2001)Google Scholar
  28. 28.
    Third Generation Partnership Project 2 (3GPP2), Physical layer standard for CDMA 2000 spread spectrum systems, Release D, 3GPP2 C.S0002-D, Version 1.0. (2004, Feb)Google Scholar
  29. 29.
    IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems, IEEE 802.16-2004 (2004, Nov)Google Scholar
  30. 30.
    Shehadeh, Y.E.H., Hogrefe, D.: A survey on secret key generation mechanisms on the physical layer in wireless networks. Secur. Comm. Netw. 8(2), 332–341 (2015)CrossRefGoogle Scholar
  31. 31.
    Wang, T., Liu, Y., Vasilakos, A.V.: Survey on channel reciprocity based key establishment techniques for wireless systems. Wireless Netw. 21(6), 1835–1846 (2015)CrossRefGoogle Scholar
  32. 32.
    Azimi-Sadjadi, B., Kiayias, A., Mercado, A., Yener, B.: Robust key generation from signal envelopes in wireless networks. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 401–410, Series CCS ‘07, New York, NY, USA. ACM (2007) [Online]. Available:

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK
  2. 2.School of EngineeringUniversity of GlasgowGlasgow, ScotlandUK

Personalised recommendations