Measuring Ciphertext Randmoness Using Die Hard Randomness Index
Conference paper
First Online:
Abstract
In this paper we present a novel quantitative measure of randomness based on Diehard randomness tests. The proposed method relies on the results of diehard tests in calculating a randomness index; namely Diehard Randomness Index (DRI). The presented index can be helpful in measuring randomness in bit sequences generated from pseudo-random and random number generators to identify which has better randomness properties. The paper also show sample calculations of the proposed index to measure randomness of ciphertext resulting from encryption using block-ciphers.
Keywords
Random Randomness test Ciphertext Encryption Diehard tests Pseudo-randomReferences
- 1.Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (2002)Google Scholar
- 2.Alcover, P.M., Guillamón, A., Ruiz, M.C.: A new randomness test for bit sequences. Informatica 24(3), 339–356 (2013)MathSciNetzbMATHGoogle Scholar
- 3.Marsaglia, G.: Diehard battery of tests of randomness (1995). [Online]. Available: http://www.stat.fsu.edu/pub/diehard/
- 4.Marsaglia, G., Tsang, W.W.: Some difficult-to-pass tests of randomness. J. Stat. Softw. 7(3) (2002)Google Scholar
- 5.Alani, M.M.: Testing randomness in ciphertext of block-ciphers using diehard tests. Int. J. Comput. Sci. Netw. Secur. 10(4), 53–57 (2010)MathSciNetGoogle Scholar
- 6.I.S. Institute: Crypt-XS tests of randomness (1998). [Online]. Available: http://www.isi.qut.edu.au/resources/cryptx/
- 7.Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST (2010)Google Scholar
- 8.Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (2001)Google Scholar
- 9.Soto, J.: Statistical testing of random number generators. In: Proceedings of the 22nd National Information Systems Security Conference, Virginia (1999)Google Scholar
- 10.Duggan, M.J., Drew, J.H., Leemis, L.M.: A test of randomness based on the distance between consecutive random number pairs. In: Proceedings of the 2005 Winter Simulation Conference (2005)Google Scholar
- 11.Gacs, P.: Uniform test of algorithmic randomness over a general space. Theor. Comput. Sci. 341(1–3), 91–137 (2005)MathSciNetCrossRefGoogle Scholar
- 12.Doganaksoy, A., Calık, C., Sulak F., Turan, M.S.: New randomness tests using random walk. In: Proceedings of National Conference on Cryptology II, Turkey (2006)Google Scholar
- 13.L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4) (2007)CrossRefGoogle Scholar
- 14.Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464(7291), 1021–1024 (2010)CrossRefGoogle Scholar
- 15.McKinney, E.H.: Generalized birthday problem. Am. Math. Mon. 73, 385–387 (1966)MathSciNetCrossRefGoogle Scholar
- 16.Isaac, R.: The Pleasures of Probability. Springer, New York (1995)Google Scholar
- 17.Wald, A., Wolfwitz, J.: An exact test for randomness in the non-parametric case based on serial correlation. Ann. Math. Stat. 14(4), 378–388 (1943)MathSciNetCrossRefGoogle Scholar
- 18.Soong, T.T.: Fundamentals of Probability and Statistics for Engineers. John Wiley and Sons, Chichester (2004)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019