Skip to main content

A Novel Biogeography Inspired Trajectory-Following Controller for National Instrument Robot

  • 461 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 938)


This paper is devoted to the design of a trajectory-following control for a differentiation nonholonomic wheeled mobile robot. It suggests a kinematic nonlinear controller steer a National Instrument mobile robot. The suggested trajectory-following control structure includes two parts; the first part is a nonlinear feedback acceleration control equation based on adaptive sliding mode control that controls the mobile robot to follow the predetermined suitable path; the second part is an optimization algorithm, that is performed depending on the Mutated Harmony Search algorithm to tune the parameters of the controller to obtain the optimum trajectory. The simulation is achieved based on MATLAB R2017b and the results present that the kinematic nonlinear controller with MHS algorithm is more effective and robust than the original Harmony search learning algorithm; It is shown that the proposed scheme is robust to reduce the chattering problem because of adaptive control law of sliding mode controller; this is shown by the minimized tracking-following error to equal or less than (1 cm) and getting smoothness of the linear velocity less than (0.2 m/s), and all trajectory- following results with predetermined suitable are taken into account. Stability analysis of the suggested controller is proven using the Lyapunov method.


This is a preview of subscription content, log in via an institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Narendra Kumar, D., Samalla, H., Rao, Ch.J., Swamy Naidu, Y., Alfoni Jose, K., Manmadha Kumar, B.: Position and orientation control of a mobile robot using neural networks. In: Jain, L.C., Behera, H.S., Mandal, J.K., Mohapatra, D.P. (eds.) Computational Intelligence in Data Mining - Volume 2. SIST, vol. 32, pp. 123–131. Springer, New Delhi (2015).

    Chapter  Google Scholar 

  2. Seo, K., Lee, J.S.: Kinematic path-following control of mobile robot under bounded angular velocity error. Adv. Robot. 20(1), 1–23 (2006)

    Article  Google Scholar 

  3. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 384–389. IEEE, Cincinnati (1990)

    Google Scholar 

  4. Zain, A.A., Daobo, W., Muhammad, S., Wanyue, J., Muhammad, S.H.: Trajectory tracking of a nonholonomic wheeleed mobile robot using hybrid controller. Int. J. Model. Optim. 6(3), 136–141 (2016)

    Article  Google Scholar 

  5. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. In: IEEE Control Systems, pp. 20–36. IEEE (1995)

    Google Scholar 

  6. Slotine, J.J., Sastry, S.S.: Tracking control of nonlinear systems using sliding surfaces, with application to robot manipulators. Int. J. Contr. 38(2), 465–492 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bartoszewicz, A.: Chattering attenuation in sliding mode control systems. Control Cybern. 29(2), 585–594 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Anthony, B., Drakunov, S.: Stabilization and tracking in the nonholonomic integrator via sliding modes. Syst. Control Lett. 29(2), 91–99 (1996)

    Article  MathSciNet  Google Scholar 

  9. Guldner, J., Utkin, V.I.: Stabilization of nonholonomic mobile robots using Lyapunov functions for navigation and sliding mode control. In: Proceedings of the IEEE International Conference on Decision Control, pp. 2967–2972. IEEE, Lake Buena Vista (1994)

    Google Scholar 

  10. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. SAGE J. 76(2), 60–68 (2001)

    Google Scholar 

  11. Adithyan, T., Vasudha, S., Gururaj, B., Chandrasegar, T.: Nature inspired algorithm. In: International Conference on Trends in Electronics and Informatics (ICEI), pp. 1131–1134. IEEE, Tirunelveli (2017)

    Google Scholar 

  12. Nizar, H., Basma, J.: Trajectory Tracking Controllers for Mobile Robot: Modeling, Design and Optimization. Lambert Academic Publishing, Saarbrücken (2016)

    Google Scholar 

  13. Al-Araji, A.: Design of a cognitive neural predictive controller for mobile robot. Ph.D. thesis, Brunel University, UK (2012)

    Google Scholar 

  14. Nizar, H., Basma, J.: Design of a kinematic neural controller for mobile robots based on enhanced hybrid firefly-artificial bee colony algorithm. Al-Khwarizmi Eng. J. 12(1), 45–60 (2016)

    Google Scholar 

  15. Ye, J.: Adaptive control of nonlinear PID-based analogue neural network for a nonholonomic mobile robot. Neurocomputing 71(7), 1561–1565 (2008)

    Article  Google Scholar 

  16. Yousif, Z., Hedley, J., Bicker, R.: Design of an adaptive neural kinematic controller for a national instrument mobile robot system. In: IEEE International Conference on Control System, Computing and Engineering, pp. 623–628. IEEE, Penang (2012)

    Google Scholar 

  17. Jun, K.L., Yoon, H., Jin, B.: Sliding mode tracking control of mobile robots with approach angle in cartesian coordinates. Int. J. Control Autom. Syst. 13(3), 718–724 (2015)

    Article  Google Scholar 

  18. Chen, M.-L., Ko, Y.-H.: Wang, J-R: Slider controller design for two-wheeled mobile robot scheme. J. Chung Cheng Inst. Technol. 40(2), 113–120 (2011)

    Google Scholar 

  19. Lee, J.H., Lin, C., Lim, H., Lee, J.M.: Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space. Int. J. Control Autom. Syst. 7(3), 429–435 (2009)

    Article  Google Scholar 

  20. Al-Araji, A.S.: Development of kinematic path-tracking controller design for real mobile robot via back-stepping slice genetic robust algorithm technique. Arab. J. Sci. Eng. 39(12), 8825–8835 (2014)

    Article  Google Scholar 

  21. Amaya, I., Cruz, J., Correa, R.: Harmony search algorithm: a variant with self-regulated Fretwidth. Appl. Math. Comput. 9(266), 1127–1152 (2015)

    MathSciNet  Google Scholar 

  22. Moh’d, A.O., Mandava, R.: The variants of the harmony search algorithm: an overview. Artif. Intell. Rev. 36(1), 49–68 (2011)

    Article  Google Scholar 

  23. Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical optimization. J. Appl. Math. 1–21 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Simon, D.: Biogeography-based optimization. Evol. Comput. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Basma Jumaa Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saleh, B.J., al-Aqbi, A.T.Q., Saedi, A.Y.F. (2018). A Novel Biogeography Inspired Trajectory-Following Controller for National Instrument Robot. In: Al-mamory, S., Alwan, J., Hussein, A. (eds) New Trends in Information and Communications Technology Applications. NTICT 2018. Communications in Computer and Information Science, vol 938. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01652-4

  • Online ISBN: 978-3-030-01653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics