Skip to main content

Comparative Study of Multi/Many-Objective Evolutionary Algorithms on Hot Rolling Application

  • Chapter
  • First Online:
Optimization in Industry

Part of the book series: Management and Industrial Engineering ((MINEN))

  • 968 Accesses

Abstract

Handling multiple number of objectives in industrial optimization problems is a regular affair. The journey of development of evolutionary algorithms for handling such problems occurred in two phases. In the first phase, multi-objective optimization algorithms are developed that worked quite satisfactorily while finding Pareto set of solutions for two to three objectives. However, their success rates for finding the Pareto optimal solutions for higher number of objectives were limited which triggered the development of different sets of evolutionary algorithms under the name of many-objective optimization algorithms. In this work, we intend to compare the performance of these two classes of algorithms for an industrial hot rolling operation from a real-life steel plant. Several process, chemistry and geometry related parameters are modelled to yield different mechanical properties such as % elongation , ultimate tensile strength and yield strength of final hot rolled steel product through data-based techniques such as artificial neural networks (ANN) . Using this ANN model, the mechanical properties are maximized to obtain the Pareto trade-off solutions using both non-dominated sorting genetic algorithms II (NSGA-II) and many-objective evolutionary algorithm decomposition and dominance (MOEA/DD) and their solutions are compared using a suitable metric for identifying the extent of convergence and diversity. This kind of Pareto set provides a designer with ample of alternatives before choosing a solution for final implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, K., Deb, K., Zhang, Q., & Kwong, S. (2015). An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Transactions on Evolutionary Computation, 19(5), 694–716.

    Article  Google Scholar 

  2. Mitra, K. (2008). Genetic algorithms in polymeric material production, design, processing and other applications: A review. International Materials Reviews, 53(5), 275–297.

    Article  Google Scholar 

  3. Wang, R., Zhou, Z., Ishibuchi, H., Liao, T., & Zhang, T. (2016). Localized weighted sum method for many-objective optimization. IEEE Transactions on Evolutionary Computation.

    Google Scholar 

  4. Cai, X., Yang, Z., Fan, Z., & Zhang, Q. (2017). Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Transactions on Cybernetics.

    Google Scholar 

  5. Herrero, J. G., Berlanga, A., & Lopez, J. M. M. (2009). Effective evolutionary algorithms for many-specifications attainment: Application to air traffic control tracking filters. IEEE Transactions on Evolutionary Computation, 13(1), 151–168.

    Article  Google Scholar 

  6. Yeung, S. H., Man, K. F., Luk, K. M., & Chan, C. H. (2008). A trapeizform U-slot folded patch feed antenna design optimized with jumping genes evolutionary algorithm. IEEE Transactions on Antennas and Propagation, 56(2), 571–577.

    Article  Google Scholar 

  7. Handl, J., Kell, D. B., & Knowles, J. (2007). Multiobjective optimization in bioinformatics and computational biology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2).

    Article  Google Scholar 

  8. Ponsich, A., Jaimes, A. L., & Coello, C. A. C. (2013). A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Transactions on Evolutionary Computation, 17(3), 321–344.

    Article  Google Scholar 

  9. Zhang, X., Tian, Y., & Jin, Y. (2015). A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 19(6), 761–776.

    Article  Google Scholar 

  10. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.

    Google Scholar 

  11. Ziztler, E., Laumanns, M., & Thiele, L. (2002). SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. Evolutionary Methods for Design, Optimization, and Control, 95–100.

    Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  13. Fu, G., Kapelan, Z., Kasprzyk, J. R., & Reed, P. (2012). Optimal design of water distribution systems using many-objective visual analytics. Journal of Water Resources Planning and Management, 139(6), 624–633.

    Article  Google Scholar 

  14. Lygoe, R. J., Cary, M., & Fleming, P. J. (2013, March). A real-world application of a many-objective optimisation complexity reduction process. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 641–655). Springer, Berlin, Heidelberg.

    Google Scholar 

  15. Purshouse, R. C., & Fleming, P. J. (2007). On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation, 11(6), 770–784.

    Article  Google Scholar 

  16. Li, M., Yang, S., & Liu, X. (2014). Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3), 348–365.

    Article  Google Scholar 

  17. Yang, S., Li, M., Liu, X., & Zheng, J. (2013). A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 17(5), 721–736.

    Article  Google Scholar 

  18. Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76.

    Article  Google Scholar 

  19. Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  Google Scholar 

  20. He, Z., & Yen, G. G. (2016). Many-objective evolutionary algorithm: Objective space reduction and diversity improvement. IEEE Transactions on Evolutionary Computation, 20(1), 145–160.

    Article  Google Scholar 

  21. Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601.

    Article  Google Scholar 

  22. Das, I., & Dennis, J. E. (1998). Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization, 8(3), 631–657.

    Article  MathSciNet  MATH  Google Scholar 

  23. Agrawal, R. B., Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems, 9(2), 115–148.

    MathSciNet  MATH  Google Scholar 

  24. Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26, 30–45.

    Google Scholar 

  25. Li, K., Deb, K., Zhang, Q., & Kwong, S. (2014). Efficient non-domination level update approach for steady-state evolutionary multiobjective optimization. Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA, Tech. Rep. COIN Report, (2014014).

    Google Scholar 

  26. Mohanty, I., Sarkar, S., Jha, B., Das, S., & Kumar, R. (2014). Online mechanical property prediction system for hot rolled IF steel. Ironmaking and Steelmaking, 41(8), 618–627.

    Article  Google Scholar 

  27. Mohammadi, A., Omidvar, M. N., & Li, X. (2013, June). A new performance metric for user-preference based multi-objective evolutionary algorithms. In 2013 IEEE Congress on Evolutionary Computation (CEC) (pp. 2825–2832). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishalay Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, P., Malik, A., Mohanty, I., Mitra, K. (2019). Comparative Study of Multi/Many-Objective Evolutionary Algorithms on Hot Rolling Application. In: Datta, S., Davim, J. (eds) Optimization in Industry. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-01641-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01641-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01640-1

  • Online ISBN: 978-3-030-01641-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics