Advertisement

Leibniz’s Arithmetical Quadrature of the Circle

  • Davide Crippa
Chapter
Part of the Frontiers in the History of Science book series (FRHIS)

Abstract

Leibniz set out to prove the impossibility of solving the indefinite—or, as he sometimes also chose to term it, the “general,” or the “universal”—quadrature of the central conic sections in a few manuscripts written during the years 1675–1676. The clearest formulation of this impossibility theorem can be found in the last Proposition (Proposition 51) of the 1676 book-length treatise De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis (hereinafter De quadratura arithmetica).

References

  1. Alexander, Amir. 2014. Infinitesimals: how a dangerous mathematical theory shaped the modern world. New York: Farrar, Strauss and Giroux.Google Scholar
  2. Andersen, Kirsti. 1984. Cavalieri’s method of indivisibles. Archive for History of Exact Sciences. 31: 291–267.MathSciNetzbMATHGoogle Scholar
  3. Arthur, Richard. 2013. Leibniz’s syncategorematic infinitesimals. Archive for History of Exact Sciences. 67(5): 553–593.MathSciNetzbMATHGoogle Scholar
  4. Bos, Henk. 1984. Arguments on Motivation in the Rise and Decline of a Mathematical Theory; the “Construction of Equations”, 1637 - ca 1750. Archive for History of Exact Sciences. 30: 331–380.MathSciNetzbMATHGoogle Scholar
  5. Bos, Henk. 2001. Redefining geometrical exactness. Dordrecht Heidelberg New York London: Springer.zbMATHGoogle Scholar
  6. Breger, Herbert. 1986. Leibniz’ Einführung des Transzendenten. Studia Leibnitiana Sonderheft. Ed. A. Heinekamp. 14: 119–132.MathSciNetGoogle Scholar
  7. Brouncker, William. 1668. The squaring of the hyperbola by an infinite series of rational numbers, together with its demonstration by the Right Honourable the Lord Viscount Brouncker. Philosophical Transactions of the Royal Society. 3: 645–649.Google Scholar
  8. Burn, Robert. 2001. Alphonse Antonio de Sarasa and Logarithms. Historia Mathematica. 28(1): 1–17.MathSciNetzbMATHGoogle Scholar
  9. Cajori, Florian. 1913. History of the exponential and logarithmic concepts. The American Mathematical Monthly 20(2): 35–47.MathSciNetzbMATHGoogle Scholar
  10. Child, J. M. 1920. The early mathematical manuscripts of Leibniz. Chicago: The Open Court Publishing Company.zbMATHGoogle Scholar
  11. Descartes, René. 1897–1913. Oeuvres de Descartes. Eds. Charles Adam and Paul Tannery. 12 vols. Paris: Cerf.Google Scholar
  12. Dhombres Jean. 2014. A tentative interpretation of the epistemological significance of the encrypted message sent by Newton to Leibniz in October 1676. Advances in Historical Studies 3(1): 22–32.Google Scholar
  13. Edward, Charles H. Jr. 1994. The historical development of the calculus. New York: Dover.Google Scholar
  14. Fabri, Honoré. 1659. Opusculum geometricum de linea sinuum et cycloide. Roma: Typis HH. Francisci Corbelletti.Google Scholar
  15. Ferraro, Giovanni and Panza, Marco. 2003. Developing into series and returning from series: A note on the foundations of eighteenth-century analysis. Historia Mathematica. 30: 17–46.MathSciNetzbMATHGoogle Scholar
  16. Giusti, Enrico. 1980. Bonaventura Cavalieri and the Theory of Indivisibles. Bologna: Edizioni Cremonese.Google Scholar
  17. Gregory James. 1668b. Exercitationes geometricae. London: William Godbid.Google Scholar
  18. Boas Hall, Marie. 2002. Henry Oldenburg: shaping the Royal Society. Oxford: Oxford University Press.zbMATHGoogle Scholar
  19. Hofmann, Joseph. 1974. Leibniz in Paris (1672-1676). His growth to mathematical maturity. Trans. A. Prag and D. T. Whiteside. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  20. De l’Hôpital, Guillaume François Antoine. 1707. Traité analytique des sections coniques et de leur usage pour la résolution des équations dans les problèmes tant déterminés qu’indéterminés. Paris: Montalant.Google Scholar
  21. Horvath, Miklos. 1983. On the Leibnizian quadrature of the circle. Annales universitatis scientiarum budapestiensis (Sectio computatorica). 4: 75–83.MathSciNetzbMATHGoogle Scholar
  22. Huygens, Christiaan. 1888–1950. Oeuvres complètes publiées par la Société hollandaise des sciences, 22 vol. Ed. Bierens de Haan. The Hague: M. Nijhoff.zbMATHGoogle Scholar
  23. Jesseph, Douglas. 1999. Squaring the Circle: the War between Hobbers and Wallis. Chicago and London: University of Chicago Press.zbMATHGoogle Scholar
  24. Jullien, Vincent (editor). 2015. Seventeenth-century indivisibles revisited. New York, Dordrecht, London: Birkhäuser Basel.Google Scholar
  25. Knobloch, Eberhard. 1989. Leibniz et son manuscrit inédit sur la quadrature des sections coniques. In The Leibniz Renaissance, International Workshop (Florence 2–5, 1986), ed. Ferdinando Abbri, 127–151. Firenze: L. Olschki.Google Scholar
  26. Knobloch, Eberhardt. 2002. Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Synthese. 133(1): 59–73.MathSciNetzbMATHGoogle Scholar
  27. Knobloch, Eberhardt. 2008. Generality and Infinitely Small Quantities in Leibniz’s Mathematics: The Case of his Quadrature of Conic Sections and Related Curves. In Infinitesimal Differences: Controversies between Leibniz and his Contemporaries. Eds. Ursula Goldenbaum, Douglas Jesseph, 171–183. Berlin-New York: Walter de Gruyter.Google Scholar
  28. Leibniz, Gottfried Wilhelm. 1849–1863. Mathematische Schriften. 7 vols. Ed. Carl I. Gerhardt. Berlin: Schmidt (Reprinted 1971-, Hildesheim: Olms).Google Scholar
  29. Leibniz, Gottfried Wilhelm. 1923-. Sämtliche Schriften und Briefe. Berlin, Göttingen: Berlin-Brandenburgische Akademie der Wissenschaften/Akademie der Wissenschaften zu Göttingen.Google Scholar
  30. Leibniz, Gottfried Wilhelm. 1989. Naissance du calcul différentiel. Ed. Marc Parmentier. Paris: Vrin.Google Scholar
  31. Leibniz Gottfried Wilhelm. 2004. Quadrature arithmétique du cercle, de l’ellipse et de l’hyperbole et la trigonométrie sans tables qui en est le corollaire. Ed. Marc Parmentier. Paris: Vrin.Google Scholar
  32. Leibniz, Gottfried Wilhelm. 2011. Gottfried Wilhelm Leibniz: Die mathematischen Zeitschriftenartikel. Eds. Hans-Jürgen Hess, and Malte-Ludof Babin. Hildesheim, Zürich, New York: Georg Olms Verlag.Google Scholar
  33. Leibniz, G. W. 2015. Obras filosóficas y cientificas. Escritos matemáticos, 7A, ed. M. S. de Mora Charles. Granada: Editorial Comares.Google Scholar
  34. Leibniz, G. W. 2016. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium est trigonometria sine tabulis, ed. E. Knobloch (tr. O Hamborg). Berlin and Heidelberg: Springer Spektrum.Google Scholar
  35. Levey, Samuel. 2008. Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism. In Infinitesimal differences: Controversies between Leibniz and his Contemporaries. Eds. Ursula Goldenbaum, Douglas Jesseph. 107–133. Berlin-New York: Walter de Gruyter.Google Scholar
  36. Lützen, Jesper. 2014. 17th century arguments for the impossibility of the indefinite and the definite quadrature of the circle. Revue d’histoire des mathématiques. 20: 211–251.zbMATHGoogle Scholar
  37. Mahnke, Dietrich. 1925. Neue Einblicke in die Entdeckungsgeschichte der höheren Analyse. Abhandlungen der Preussische Akademie der Wissenschaften. Phys-math Klass, 1: 1–71.Google Scholar
  38. Mancosu, Paolo. 1999. Philosophy of Mathematics and Mathematical Practice in XVII Century. Oxford: Oxford University Press.zbMATHGoogle Scholar
  39. Malet, Antoni. 1996. From Indivisibles to Infinitesimals: Studies on Seventeenth-Century Mathematizations of Infinitely Small Quantities. Barcelona: Universitat Autonoma de Barcelona.zbMATHGoogle Scholar
  40. Malet, Antoni and Panza, Marco. 2015. Wallis on indivisibles. In Seventeenth-century indivisibles revisited. Ed. Vincent Jullien. 307–347. New York, Dordrecht, London: Birkhäuser Basel.zbMATHGoogle Scholar
  41. Massa Esteve, Maria Rosa. 2016. Mengoli’s mathematical ideas in Leibniz’s excerpts. BSHM Bulletin: Journal of the British Society for the History of Mathematics. 32, 1: 1–21.MathSciNetzbMATHGoogle Scholar
  42. Mengoli, Pietro. 1650. Novae quadraturae arithmeticae. Bologna: Montij.Google Scholar
  43. Mercator, Nicolaus. 1668. Logarithmotechnia, sive methodus construendi logarithmos nova, accurata et facilis. London: William Godbid.Google Scholar
  44. Montucla, Jean-Etienne. 1831. Histoire des recherches sur la quadrature du cercle, avec une addition concernant les problèmes de la duplication du cube et de la trisection de l’angle. Ed. François S. Lacroix. Paris: Bachelier père et fils.Google Scholar
  45. Panza, Marco. 2005. Newton et les origines de l’analyse. Paris: Blanchard.zbMATHGoogle Scholar
  46. Pasini, Enrico. 1993. Il reale e l’immaginario. La fondazione del calcolo infinitesimale nel pensiero di Leibniz. Torino: Edizioni Sonda.Google Scholar
  47. Probst, Siegmund. 2006. Zur Datierung von Leibniz’ Entdeckung der Kreisreihe. In Einheit in der Vielheit. VIII. Internationaler Leibniz-Kongress. Eds. Herbert Breger, Jürgen Herst and Sven Erdner. 813–817. Hannover: Gottfried-Wilhelm-Leibniz-Gesellschaft.Google Scholar
  48. Probst, Siegmund. 2008. Indivisibles and Infinitesimals in Early Mathematical Texts of Leibniz. In Infinitesimal differences: Controversies between Leibniz and his Contemporaries. Eds. Ursula Goldenbaum, Douglas Jesseph. 95–106. Berlin-New York: Walter de Gruyter.Google Scholar
  49. Probst, Siegmund. 2015. Leibniz as Reader and Second Inventor: The Cases of Barrow and Mengoli. In G. W. Leibniz, interrelations between mathematics and philosophy. Eds. Norma B. Goethe, Philip Beeley, David Rabouin. 111–134. Dordrecht Heidelberg New York London: Springer.Google Scholar
  50. Probst, Siegmund. 2016. Leibniz und Roberval. In Für unser Glück oder das Glück anderer. Vorträge des X. Internationalen Leibniz-Kongresses. Eds. Wenchao Li et al. Band IV. 183–189. Hildesheim: Olms.Google Scholar
  51. Rabouin, David. 2015. Leibniz’s rigorous foundation of the method of indivisibles. In Seventeenth-century indivisibles revisited. Ed. Vincent Jullien. 347–365. New York, Dordrecht, London: Birkhäuser Basel.Google Scholar
  52. Rosso, Riccardo. 2014. Appunti di storia dei logaritmi V: logaritmi e serie. L’insegnamento della Matematica e delle Scienze Integrate. 37B: 311–342.Google Scholar
  53. Stedall, Jacqueline. 2008. Mathematics emerging. A sourcebook: 1540–1900. Oxford: Oxford University Press.zbMATHGoogle Scholar
  54. Viète François. 1646. Francisci Vietae opera mathematica, in unum Volumen congesta, ac recognita, opera atque studio Francisci a Schooten Leydensis, Matheseos professoris Lugduni Batavorum. Leyden: Ex officina Johannis Elsevirii.Google Scholar
  55. Viète, François. 1983. The Analytic Art: Nine Studies in Algebra, Geometry and Trigonometry from the Opus restitutae Mathematicae Analyseos, seu Algebra Nova. Ed. R. Witmer. New York: Dover.zbMATHGoogle Scholar
  56. Wallis, John. 1668. An account of two books. Philosophical Transactions of the Royal Society, 3: 640–644.Google Scholar
  57. Wallis, John. 2004. The arithmetic of infinitesimals. Ed., transl. Jacqueline Stedall. Dordrecht Heidelberg New York London: Springer.Google Scholar
  58. Wallis, John. 2012. The Correspondence of John Wallis (1616-1703). Volume III. October 1668-1671. Eds. Philip Beeley, Cristoph Scriba. Oxford: Oxford University Press.Google Scholar
  59. Whiteside, Derek, Thomas. 1961. Patterns of mathematical thought in later 17th century mathematics. Archive for History of Exact Sciences. 1: 179–388.MathSciNetzbMATHGoogle Scholar
  60. Zeuthen, H. Georg. 1903. Geschichte der Mathematik im XVI. and XVII. Jahrhundert. transl. R. Meyer. Leipzig: Teubner.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Davide Crippa
    • 1
  1. 1.Université Paris Diderot, SPHèreParisFrance

Personalised recommendations