Skip to main content

Measuring the Universe with Galaxy Redshift Surveys

  • Conference paper
  • First Online:
Toward a Science Campus in Milan (CDIP 2017)

Abstract

Galaxy redshift surveys are one of the pillars of the current standard cosmological model and remain a key tool in the experimental effort to understand the origin of cosmic acceleration. To this end, the next generation of surveys aim at achieving sub-percent precision in the measurement of the equation of state of dark energy w(z) and the growth rate of structure f(z). This however requires comparable control over systematic errors, stressing the need for improved modelling methods. In this paper we review a few specific highlights of the work done in this direction by the Darklight project (http://darklight.fisica.unimi.it.). Supported by an ERC Advanced Grant, Darklight has been developing novel techniques and applying them to numerical simulations and to the new redshift survey data of the VIPERS survey. We focus in particular on: (a) advances on estimating the growth rate of structure from redshift-space distortions; (b) parameter estimation through global Bayesian reconstruction of the density field from survey data; (c) impact of massive neutrinos on large-scale structure measurements. Overall, Darklight is paving the way for forthcoming high-precision experiments, such as Euclid, the next ESA cosmological mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/cfht.

References

  1. D.J. Eisenstein et al., AJ 142, 72 (2011)

    Google Scholar 

  2. L. Guzzo, Vipers team. The Messenger 168, 40 (2017)

    ADS  Google Scholar 

  3. L. Guzzo et al., AAP 566, A108 (2014)

    Article  Google Scholar 

  4. B. Garilli et al., AAP 562, A23 (2014)

    Article  Google Scholar 

  5. M. Scodeggio et al., AAP (2017), arXiv:1611.07048

  6. D.G. York et al., AJ 120, 1579 (2000)

    Google Scholar 

  7. D.J. Eisenstein et al., ApJ 633, 560 (2005)

    Article  ADS  Google Scholar 

  8. C. Di Porto et al., AAP 594, A62 (2016)

    Article  Google Scholar 

  9. S. Rota et al., AAP 601, A144 (2017)

    Article  Google Scholar 

  10. Planck Collaboration, et al. (2015), arXiv:1502.01589

  11. A.G. Riess et al., AJ 116, 1009 (1998)

    Google Scholar 

  12. S. Perlmutter et al., ApJ 517, 565 (1999)

    Article  ADS  Google Scholar 

  13. S. Cole et al., MNRAS 362, 505 (2005)

    Article  ADS  Google Scholar 

  14. S. Alam et al., MNRAS 470, 2617 (2017)

    Article  ADS  Google Scholar 

  15. M. Davis, P.J.E. Peebles, ApJ 267, 465 (1983)

    Article  ADS  Google Scholar 

  16. N. Kaiser, MNRAS 227, 1 (1987)

    Article  ADS  Google Scholar 

  17. L. Guzzo et al., Nature 451, 541 (2008)

    Article  ADS  Google Scholar 

  18. R. Laureijs et al. (2011), arXiv:1110.3193

  19. T. Okumura, Y.P. Jing, ApJ 726, 5 (2011)

    Article  ADS  Google Scholar 

  20. D. Bianchi et al., MNRAS 427, 2420 (2012)

    Article  ADS  Google Scholar 

  21. J.A. Peacock et al., Nature 410, 169 (2001)

    Article  ADS  Google Scholar 

  22. J.A. Peacock, S.J. Dodds, MNRAS 267, 1020 (1994)

    Article  ADS  Google Scholar 

  23. A. Pezzotta et al., AAP 604, A33 (2017)

    Article  Google Scholar 

  24. S. de la Torre, L. Guzzo, MNRAS 427, 327 (2012)

    Article  ADS  Google Scholar 

  25. A. Taruya, T. Nishimichi, S. Saito, Phys. Rev. D 82(6), 063522 (2010)

    Article  ADS  Google Scholar 

  26. D. Bianchi, M. Chiesa, L. Guzzo, MNRAS 446, 75 (2015)

    Article  ADS  Google Scholar 

  27. K.B. Fisher, ApJ 448, 494 (1995)

    Article  ADS  Google Scholar 

  28. R. Scoccimarro, Phys. Rev. D 70(8), 083007 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. B.A. Reid et al., MNRAS 426, 2719 (2012)

    Article  ADS  Google Scholar 

  30. D. Bianchi, W.J. Percival, J. Bel, MNRAS 463, 3783 (2016)

    Article  ADS  Google Scholar 

  31. E. Jennings, C.M. Baugh, S. Pascoli, MNRAS 410, 2081 (2011)

    ADS  Google Scholar 

  32. J. Bel et al., in preparation (2017)

    Google Scholar 

  33. C. Blake et al., MNRAS 406, 803 (2010)

    ADS  Google Scholar 

  34. F.G. Mohammad et al., ArXiv e-prints (2017)

    Google Scholar 

  35. N. Hamaus, Phys. Rev. Lett. 117(9), 091302 (2016)

    Article  ADS  Google Scholar 

  36. D. Micheletti et al., AAP 570, A106 (2014)

    Article  Google Scholar 

  37. A.J. Hawken et al., AAP (2017), arXiv:1611.07046

  38. S. de la Torre et al., AAP (2017), arXiv:1612.05647

  39. M. Wilson et al., in preparation (2017)

    Google Scholar 

  40. C. Blake et al., MNRAS 425, 405 (2012)

    Article  ADS  Google Scholar 

  41. F. Beutler et al., MNRAS 466, 2242 (2017)

    Article  ADS  Google Scholar 

  42. F. Beutler et al., MNRAS 423, 3430 (2012)

    Article  ADS  Google Scholar 

  43. C. Howlett et al., MNRAS 449, 848 (2015)

    Article  ADS  Google Scholar 

  44. T. Okumura, Pub. Astr. Soc. Jpn. 68, 38 (2016)

    Article  ADS  Google Scholar 

  45. B.R. Granett et al., AAP 583, A61 (2015)

    Article  Google Scholar 

  46. C. Carbone et al., JCAP 3, 030 (2011)

    Article  ADS  Google Scholar 

  47. C. Carbone, M. Petkova, K. Dolag, JCAP 7, 034 (2016)

    Article  ADS  Google Scholar 

  48. M. Zennaro et al., MNRAS 466, 3244 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank our collaborators in the VIPERS team for their contribution to building and analysing such a unique galaxy sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guzzo, L. et al. (2018). Measuring the Universe with Galaxy Redshift Surveys. In: Bortignon, P., Lodato, G., Meroni, E., Paris, M., Perini, L., Vicini, A. (eds) Toward a Science Campus in Milan. CDIP 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-01629-6_1

Download citation

Publish with us

Policies and ethics