Goal-Oriented Approach to Enable New Business Models for SME Using Smart Products

  • Jan HickingEmail author
  • Violett Zeller
  • Günther Schuh
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 540)


The manufacturing industry has to exploit trends like “Industrie 4.0” and digitization not only to design production more efficiently, but also to create and develop new and innovative business models [1, p. 2]. New business models ensure that even SMEs are able to open up new markets and canvass new customers [2, p. 82ff.]. This means that in order to stay competitive, SMEs must transform their existing business models [3, p. 2ff.]. The creation of new business models require smart products [4, p. 1, 5, p. 235, 6, p. 13, 7, p. 2, 8, p. 322, 9, p. 7]. The required data base for new business models cannot be provided by SMEs alone, whereas smart products are able to provide a foundation, given the creation of smart data and smart services they enable [5, p. 235]. These services then expand functions and functionality of smart products and define new business models [10, 6f.]. However, the development of smart products by small and medium-sized enterprises is still lined with obstacles [11, p. 640]. Regarding the product development process the inclusion of smart products means that new and SME-unknown domains diffuse during the process [12, p. 2]. Although there are many models regarding this process there appears to be a substantial lack of taking into account the competencies enabled by the implementation of digital technologies. Hence, several SME-supporting approaches fail to address the two major challenges these enterprises are faced with [13, p. 8]. This paper generally describes valid objectives containing relevant stakeholders and their allocation to the phases of the product life cycle. Within each objective the potential benefit for customers and producers is analyzed. The model given in this paper helps SMEs in defining the initiation of a product development project more precisely and hence also eases project scoping and targeting for the smartification of an already existing product.


Smart product development Smartification 



This article arose during the work of the authors, within the context of the research project “Mittelstand 4.0-Kompetenzzentrum Dortmund” (project number: 01MF15001C) funded by the Federal Ministry for Economic Affairs and Energy in Germany. The authors want to thank all donors, supporter and critics.


  1. 1.
    Schuh, G.: Industrie 4.0 in der Produktentwicklung, Aachen, 14 March 2017Google Scholar
  2. 2.
    Kagermann, H.: IT-Driven Business Models: Global Case Studies in Transformation. Wiley, Hoboken (2011)Google Scholar
  3. 3.
    Gassmann, O., Frankenberger, K., Csik, M.: Geschäftsmodelle entwickeln: 55 innovative Konzepte mit dem St. Galler Business Model Navigator, 2nd edn. Hanser, München (2017). Scholar
  4. 4.
    Michel, S.: Mit Digitalisierung Produkte und Prozesse optimieren. Digitale Produktentwicklung. Accessed 04 June 2017
  5. 5.
    Kagermann, H.: Chancen von Industrie 4.0 nutzen. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.4. SRT, pp. 235–246. Springer, Heidelberg (2017). Scholar
  6. 6.
    Bellersheim, V.: Digitale Geschäftsmodelle und Trends im Maschinenbau. Vortrag auf dem Jahrestreffen des Europäischen Verbandes der Werkzeugmaschinenhersteller (CECIMO), November 2016Google Scholar
  7. 7.
    Röglinger, M., Urbach, N.: Digitale Geschäftsmodelle im Internet der Dinge. Diskussionspapier, Bayreuth, Geschäftsmodelle in der digitalen Welt, August 2016.
  8. 8.
    Wildbihler, M., Stelzer, B., Schiebel, E., Brecht, L.: Internet der dinge. In: Schallmo, D., Rusnjak, A., Anzengruber, J., Werani, T., Jünger, M. (eds.) Digitale Transformation von Geschäftsmodellen. SBMI, pp. 311–331. Springer, Wiesbaden (2017). Scholar
  9. 9.
    Barbian, M., et al.: Digitale Chancen und Bedrohungen - Geschäftsmodelle für Industrie 4.0, Statusreport, o.O., May 2016Google Scholar
  10. 10.
    Lauenroth, K., Schreiber, F., Schreiber, F.: Maschinen- und Anlagenbau im digitalen Zeitalter: Requirements Engineering als systematische Gestaltungskompetenz für die Fertigungsindustrie Industrie 4.0, 1st ed. s.l.: Beuth Verlag GmbH (2016)Google Scholar
  11. 11.
    Issa, A., Lucke, D., Bauernhansl, T.: Mobilizing SMEs towards Industrie 4.0-enabled smart products. In: Tseng, M.M., Tsai, H.-Y., Wang, Y. (eds.) Manufacturing Systems 4.0 – Proceedings of the 50th CIRP Conference on Manufacturing Systems, vol. 63, pp. 670–674. Elsevier, o.O.: (2017).
  12. 12.
    Brauckmann, O.: Smart Production: Wertschöpfung durch Geschäftsmodelle. Springer Vieweg, Berlin (2015). Scholar
  13. 13.
    Gonzales, A.A., Becker, K., Cheng, C.-H., Döricht, V., Duchon, M.: Digitale Transformation: Wie Informations- und Kommunikationstechnologie etablierte Branchen grundlegend verändern. fortiss GmbH, München (2016)Google Scholar
  14. 14.
    Kühnl, C.: Software gibt den Takt vor. Mechatronic & Fertigung 2010, 20–21 (2010)Google Scholar
  15. 15.
    Design methodology for mechatronic systems 2206 (2004)Google Scholar
  16. 16.
    Bullinger, H.-J., Warschat, J., Bading, A. (eds.): Forschungs- und Entwicklungsmanagement: Simultaneous Engineering, Projektmanagement, Produktplanung, Rapid Product Development. Teubner, Stuttgart (1997). Scholar
  17. 17.
    Hollauer, C., Becerril, L., Kattner, N., Weidmann, D., Chucholowski, N., Lindemann, U.: Adaptable mechatronic engineering design processes: process reference model and methodology. In: Chakrabarti, A., Chakrabarti, D. (eds.) ICoRD 2017. SIST, vol. 65, pp. 597–607. Springer, Singapore (2017). Scholar
  18. 18.
    Gausemeier, J., Ebbesmeyer, P., Kallmeyer, F.: Produktinnovation: Strategische Planung und Entwicklung der Produkte von morgen. Hanser, München [u.a.] (2001)Google Scholar
  19. 19.
    Beier, G., Rothenburg, U., Woll, R., Stark, R.: Modellbasiertes systems engineering: Durchgängige Entwicklung mit erlebbaren Prototypen. In: Digital Engineering, pp. 14–17 (2012).
  20. 20.
    Nattermann, R., Anderl, R.: Approach for a data-management-system and a proceeding-model for the development of adaptronic systems. In: Design and Manufacturing, Parts A and B, Vancouver, British Columbia, Canada, vol. 32, pp. 379–387 (2010).
  21. 21.
    Ponn, J., Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte: Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, 2nd edn. Springer, Heidelberg (2011). Scholar
  22. 22.
    Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming competition: spotlight on managing the internet of things. Harvard Bus. Rev. 65, 64–88 (2014)Google Scholar
  23. 23.
    Anderl, R., Picard, A., Albrecht, K.: Smart engineering for smart products. In: Abramovici, M., Stark, R. (eds.) Smart Product Engineering. Lecture Notes in Production Engineering, pp. 1–10. Springer, Heidelberg (2013). Scholar
  24. 24.
    Hermann, M., Pentek, T., Otto, B.: Design principles for Industrie 4.0 scenarios: a literature review (2015).
  25. 25.
    Weyrich, M.: Industrie 4.0 und intelligente Produkte: Wie Automatisierungs- und Softwaresysteme der nächsten Generation die Produktentwicklung und Produktion verändern, München, 17 June 2015Google Scholar
  26. 26.
    Anderl, R.: Industrie 4.0 - Advanced Engineering of Smart Products and Smart Production (2014).
  27. 27.
    Schlick, J., Stephan, P., Loskyll, M., Lappe, D.: Industrie 4.0 in der praktischen Anwendung. In: Vogel-Heuser, B., Bauernhansl, T., Hompel, M. (eds.) Handbuch Industrie 4.0 Bd.2. SRT, pp. 3–29. Springer, Heidelberg (2017). Scholar
  28. 28.
    Vogel-Heuser, B., Bauernhansl, T., Ten Hompel, M. (eds.): Handbuch Industrie 4.0: Bd 2: Automatisierung, 2nd ed. Springer Vieweg, Berlin (2017).
  29. 29.
    McFarlane, D., Giannikas, V., Wong, A.C.Y., Harrison, M.: Intelligent products in the supply chain - 10 years on. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Studies in Computational Intelligence, vol. 472, pp. 103–117. Springer, Heidelberg (2013). Scholar
  30. 30.
    Kiritsis, D.: Closed-loop PLM for intelligent products in the era of the Internet of things. Comput.-Aided Des. 43(5), 479–501 (2011). Scholar
  31. 31.
    Vogel-Heuser, B.: Preparing for the 4.0 Future: Industry strategies in anticipation of 4.0. Munich [u.a.], 21 August 2015Google Scholar
  32. 32.
    Janzen, S., Maass, W.: Smart Product Descprition Object (SPDO). In: Eschenbach, C., Gruninger, M. (eds.) Frontiers in Artificial Intelligence and Applications, Formal Ontology in Information Systems: Proceedings of the Fifth International Conference (FOIS 2008), vol. 183, pp. 25–30. IOS Press, Amsterdam (2008)Google Scholar
  33. 33.
    Meier, H., Uhlmann, E. (eds.): Integrierte Industrielle Sach- und Dienstleistungen: Vermarktung. Entwicklung und Erbringung hybrider Leistungsbündel. Springer, Heidelberg (2012). Scholar
  34. 34.
    Seidenschwang, P.: Smart Products Engineering. White Paper, Eschborn (2013)Google Scholar
  35. 35.
    Scheibe, H.-G.: Smart Products: Neue Spielregeln für die Industrie. In: ROI Dialog, ROI Management Consulting AG, Ed., pp. 10–11 (2016)Google Scholar
  36. 36.
    it’s OWL, So intelligent können Produkte sein, Paderborn (2015)Google Scholar
  37. 37.
    Krause, T., et al.: IT-Plattformen für das Internet der Dinge (IoT): Basis Intelligenter Produkte und Services. Fraunhofer Verlag, Stuttgart (2017)Google Scholar
  38. 38.
    Sapatnekar, S. (ed.): Proceedings of the 47th Design Automation Conference on - DAC 2010. ACM Press, New York (2010)Google Scholar
  39. 39.
    Sendler, U. (ed.): Industrie 4.0 Grenzenlos. Springer Vieweg, Heidelberg (2016).
  40. 40.
    Abramovici, M.: Smart products. In: Laperrière, L., Reinhart, G. (eds.) CIRP Encyclopedia of Production Engineering, the International Academy for Produ, pp. 1–5. Springer, Heidelberg (2014). Scholar
  41. 41.
    Samulat, P.: Die Digitalisierung der Welt: Wie das Industrielle Internet der Dinge aus Produkten Services macht. Springer Fachmedien Wiesbaden, Wiesbaden (2017). Scholar
  42. 42.
    Westkämper, E., Spath, D., Constantinescu, C., Lentes, J. (eds.): Digitale Produktion. Springer, Heidelberg (2013). Scholar
  43. 43.
    Janata, S.: Leitfaden Digitalisierung: Strategien, Technologien und Ökosysteme, Kassel (2016)Google Scholar
  44. 44.
    Kreutzer, R., Land, K.-H.: Digitaler Darwinismus: Der stille Angriff auf Ihr Geschäftsmodell und Ihre Marke; das Think!Book, 2nd edn. Springer Gabler, Wiesbaden (2016). Scholar
  45. 45.
    Herterich, M.M., Mikusz, M.: Looking for a few good concepts and theories for digitized artifacts and digital innovation in a material world. In: 37th International Conference on Information Systems (ICIS 2016): Dublin, Ireland, 11–14 December 2016, Association for Information Systems (AIS), Ed., Curran Associates Inc, Red Hook, pp. 750–771 (2017)Google Scholar
  46. 46.
    Yoo, Y., Henfridsson, O., Lyytinen, K.: Research commentary —the new organizing logic of digital innovation: an agenda for information systems research. Inf. Syst. Res. 21(4), 724–735 (2010). Scholar
  47. 47.
    Yoo, Y.: The tables have turned: how can the information systems field contribute to technology and innovation management research? JAIS 14(5), 227–236 (2013)CrossRefGoogle Scholar
  48. 48.
    Yoo, Y., Boland, R.J., Lyytinen, K., Majchrzak, A.: Organizing for innovation in the digitized world. Organ. Sci. 23(5), 1398–1408 (2012). Scholar
  49. 49.
    Yoo, Y.: Computing in everyday life: a call for research on experiential computing. MIS Q. 34(2), 213–231 (2010). Scholar
  50. 50.
    Novales, A., Mocker, M., Simonovich, D.: IT-enriched “Digitized” Products: Building Blocks and Challenges. Paper, AMICS, San Diego, USA (2016). Accessed 17 Dec 2017Google Scholar
  51. 51.
    Hill, T.: Production/Operations Management. PHI Prentice-Hall International, Englewood Cliffs (1983)Google Scholar
  52. 52.
    Feldhusen, J., Gebhardt, B.: Product Lifecycle Management für die Praxis: Ein Leitfaden zur modularen Einführung. Umsetzung und Anwendung. Springer-Verlag, Heidelberg (2008). Scholar
  53. 53.
    Eigner, M., Stelzer, R.: Product Lifecycle Management: Ein Leitfaden für Product Development und Life Cycle Management, 2nd edn. Springer, Dordrecht (2013). Scholar
  54. 54.
    Schuh, G. (ed.): Produktionsplanung und -steuerung: Grundlagen. Gestaltung Und Konzepte. Springer, Dordrecht (2006). Scholar
  55. 55.
    Kagermann, H., et al.: Smart Service Welt: Umsetzungsempfehlungen für das Zukunftsprojekt Internetbasierte Dienste für die Wirtschaft, Berlin, March 2014Google Scholar
  56. 56.
    Herterich, M.M., Eck, A., Uebernickel, F.: Exploring how digitized products enable industrial service innovation – an affordance perspective. In: 24. European Conference on Information Systems (ECIS), İstanbul, Turkey, 2016 4, Istanbul (Türkei), Research Papers 156 (2016). Accessed 17 Dec 2017
  57. 57.
    Santos, K., Loures, E., Piechnicki, F., Canciglieri, O.: Opportunities assessment of product development process in Industry 4.0. Procedia Manufact. 11, 1358–1365 (2017). Scholar
  58. 58.
    Schallmo, D., Rusnjak, A.: Roadmap zur digitalen transformation von geschäftsmodellen. In: Schallmo, D., Rusnjak, A., Anzengruber, J., Werani, T., Jünger, M. (eds.) Digitale Transformation von Geschäftsmodellen. SBMI, pp. 1–31. Springer, Wiesbaden (2017). Scholar
  59. 59.
    Cronin, M.J.: Smart Products, Smarter Services: Strategies for Embedded Control. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  60. 60.
    Schaupp, E., Abele, E., Metternich, J.: Potentials of digitalization in tool management. Procedia CIRP 63, 144–149 (2017). Scholar
  61. 61.
    Demont, A., Paulus-Rohmer, D.: Industrie 4.0-geschäftsmodelle systematisch entwickeln. In: Schallmo, D., Rusnjak, A., Anzengruber, J., Werani, T., Jünger, M. (eds.) Digitale Transformation von Geschäftsmodellen. SBMI, pp. 97–125. Springer, Wiesbaden (2017). Scholar
  62. 62.
    Meyer, G.G., Främling, K., Holmström, J.: Intelligent products: a survey. Comput. Ind. 60(3), 137–148 (2009). Scholar
  63. 63.
    Herterich, M.M., Uebernickel, F., Brenner, W.: The impact of cyber-physical systems on industrial services in manufacturing. Procedia CIRP 30, 323–328 (2015). Scholar
  64. 64.
    Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming companies. Harvard Bus. Rev. 96–112(114), 2015 (2015)Google Scholar
  65. 65.
    Schuh, G., Kreutzer, R.: Utility potentials of cyber-physical systems´ field data. In: Akay, H.U., Bendsoe, M.P., Brezzi, F., Castellano, M.D. (eds.) IJERD - International Journal of Engineering Research and Development, 14, vol. 1, pp. 24–35. IJERD, o.O. (2018)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Institute for Industrial ManagementFIR at the RWTH Aachen UniversityAachenGermany

Personalised recommendations