Skip to main content

Mean-Field Evolution of Fermions with Singular Interaction

  • Conference paper
  • First Online:
Macroscopic Limits of Quantum Systems (MaLiQS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 270))

Included in the following conference series:

Abstract

We consider a system of N fermions in the mean-field regime interacting through an inverse power law potential \(V(x)=|x|^{-\alpha }\), for \(\alpha \in (0,1]\). We prove the convergence of a solution of the many-body Schrödinger equation to a solution of the time-dependent Hartree–Fock equation in the sense of reduced density matrices, for a specific class of initial data, namely translation-invariant states. We stress the dependence on the singularity of the potential in the regularity of the initial data. The proof is an adaptation of Porta et al. (J. Stat. Phys. 166:1345–1364, 2017, [27]), where the case \(\alpha =1\) is treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amour, L., Khodja, M., Nourrigat, J.: The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)

    Article  MathSciNet  Google Scholar 

  2. Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147(3), 527–548 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean-field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Accuracy of the time-dependent Hatree–Fock approximation for uncorrelated initial states. J. Stat. Phys. 115(3–4), 1037–1055 (2004)

    Article  Google Scholar 

  7. Bardos, C., Ducomet, B., Golse, F., Mauser, N.J.: The TDHF approximation for Hamiltonians with m-particle interaction potentials. Commun. Math. Sci. 1, 1–9 (2007)

    Article  MathSciNet  Google Scholar 

  8. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)

    Article  MathSciNet  Google Scholar 

  9. Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55, 021901 (2014) (10 pp.)

    Article  MathSciNet  Google Scholar 

  10. Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)

    Article  MathSciNet  Google Scholar 

  11. Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)

    Article  MathSciNet  Google Scholar 

  12. Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, vol. 7. Springer, Berlin (2016)

    Book  Google Scholar 

  13. Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean-field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)

    Article  MathSciNet  Google Scholar 

  14. Fefferman, Ch.L., de la Llave, R.: Relativistic Stability of Matter - I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)

    Google Scholar 

  15. Figalli, A., Ligabò, M., Paul, T.: Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2013)

    Article  MathSciNet  Google Scholar 

  16. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)

    Article  MathSciNet  Google Scholar 

  17. Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223, 57–94 (2017)

    Article  MathSciNet  Google Scholar 

  18. Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6, 977–997 (1994)

    Article  MathSciNet  Google Scholar 

  19. Hainzl, C., Seiringer, R.: General decomposition of radial functions on \({\mathbb{R}}^n\) and applications to N-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)

    Article  MathSciNet  Google Scholar 

  21. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  22. Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)

    Article  MathSciNet  Google Scholar 

  23. Markowich, P.A., Mauser, N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Model. Methods Appl. Sci. 3(1), 109–124 (1993)

    Article  MathSciNet  Google Scholar 

  24. Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)

    Article  MathSciNet  Google Scholar 

  25. Petrat, S.: Hartree corrections in a mean-field limit for fermions with Coulomb interaction. J. Phys. A Math. Theor. (24), 244004 (2017) (19 pp.)

    Article  MathSciNet  Google Scholar 

  26. Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), 51 pp. (2016)

    Google Scholar 

  27. Porta, M., Rademacher, S., Saffirio, C., Schlein, B.: Mean-field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)

    Article  MathSciNet  Google Scholar 

  28. Solovej, J.P.: Many Body Quantum Mechanics. Lecture Notes. Summer 2007. www.mathematik.uni-muenchen.de/~lowsorensen/Lehre/SoSe2013/MQM2/skript.pdf

  29. Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is supported by the grant SNSF Ambizione PZ00P2_161287/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Saffirio .

Editor information

Editors and Affiliations

A Kinetic Energy Estimates

A Kinetic Energy Estimates

To bound the \(L^{5/3}\) norm of the density \(\rho _t\), we observe that the Lieb–Thirring inequality and the positivity of the interaction potential yield

$$\Vert \rho _t\Vert _{L^{5/3}}^{5/3}\le \mathrm{{tr}}\ (-\Delta )\omega _{N,t}\le \varepsilon ^{-2}\mathcal {E}_\mathrm{HF}(\omega _{N,t})$$

where \(\mathcal {E}_\mathrm{HF}\) is the Hartree–Fock energy functional defined in (1.4). Conservation of energy implies

$$\Vert \rho _t\Vert _{L^{5/3}}^{5/3}\le \varepsilon ^{-2}\mathcal {E}_\mathrm{HF}(\omega _{N,t})=\varepsilon ^{-2}\mathcal {E}_\mathrm{HF}(\omega _{N}).$$

To close the estimate using the assumption on the kinetic energy of the initial sequence \(\mathrm{{tr}}\ (-\varepsilon ^2\Delta )\omega _{N}\le C\,N\), we observe that the potential energy can be bounded by the kinetic energy. Indeed, the Hardy–Littlewood–Sobolev inequality yields

$$\begin{aligned} \frac{1}{N}\int \frac{1}{|x-y|^\alpha }\rho _0(x)\rho _0(y)\,dx\,dy\le \frac{C}{N}\Vert \rho _0\Vert ^2_{L^{6/(5-\alpha )}} \end{aligned}$$

By interpolation, using that \(\frac{6}{6-\alpha }\in \left( 1,\frac{5}{3}\right) \) and \(\Vert \rho _0\Vert _{L^1}=N\), we have

$$\begin{aligned} \begin{aligned} \frac{1}{N}\int \frac{1}{|x-y|^\alpha }\rho _0(x)\rho _0(y)\,dx\,dy&\le \frac{C}{N}\Vert \rho _0\Vert _{L^1}^{\frac{12-5\alpha }{6}}\Vert \rho _0\Vert _{L^{\frac{5}{3}}}^{\frac{5}{6}\alpha } \\&\le C\,N^{1-\frac{5}{6}\alpha }\Vert \rho _0\Vert _{L^{\frac{5}{3}}}^{\frac{5}{6}\alpha }\\&\le C\,N+N^{-\frac{2}{3}\alpha }\Vert \rho _0\Vert ^{\frac{5}{3}\alpha }_{L^{\frac{5}{3}}}, \end{aligned} \end{aligned}$$

where in the last line we have used Young’s inequality \(ab\le \frac{a^p}{p}+\frac{b^q}{q}\), \(p^{-1}+q^{-1}=1\), on the quantities \(a=N^{1-\frac{\alpha }{2}}\) and \(b=N^{-\frac{\alpha }{3}}\Vert \rho _0\Vert _{L^{\frac{5}{3}}}^{\frac{5}{6}\alpha }\) with \(p=2/(2-\alpha )\) and \(q=2/\alpha \). Thus, applying again the Lieb–Thirring inequality and recalling that \(\varepsilon =N^{-1/3}\), we obtain

$$\begin{aligned} \frac{1}{N}\int \frac{1}{|x-y|^\alpha }\rho _0(x)\rho _0(y)\,dx\,dy\le C\,N+C\,\mathrm{{tr}}\ (-\varepsilon ^2\Delta )\omega _N \end{aligned}$$

which gives the bound

$$\begin{aligned} \frac{1}{N}\int \frac{1}{|x-y|^\alpha }\rho _0(x)\rho _0(y)\,dx\,dy\le C\,N \end{aligned}$$

thanks to assumption (i).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saffirio, C. (2018). Mean-Field Evolution of Fermions with Singular Interaction. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_4

Download citation

Publish with us

Policies and ethics