Abstract
We consider a system of N fermions in the mean-field regime interacting through an inverse power law potential \(V(x)=|x|^{-\alpha }\), for \(\alpha \in (0,1]\). We prove the convergence of a solution of the many-body Schrödinger equation to a solution of the time-dependent Hartree–Fock equation in the sense of reduced density matrices, for a specific class of initial data, namely translation-invariant states. We stress the dependence on the singularity of the potential in the regularity of the initial data. The proof is an adaptation of Porta et al. (J. Stat. Phys. 166:1345–1364, 2017, [27]), where the case \(\alpha =1\) is treated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Amour, L., Khodja, M., Nourrigat, J.: The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)
Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22, 525–552 (2011)
Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147(3), 527–548 (1992)
Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)
Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean-field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)
Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Accuracy of the time-dependent Hatree–Fock approximation for uncorrelated initial states. J. Stat. Phys. 115(3–4), 1037–1055 (2004)
Bardos, C., Ducomet, B., Golse, F., Mauser, N.J.: The TDHF approximation for Hamiltonians with m-particle interaction potentials. Commun. Math. Sci. 1, 1–9 (2007)
Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)
Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55, 021901 (2014) (10 pp.)
Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)
Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)
Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics. Springer Briefs in Mathematical Physics, vol. 7. Springer, Berlin (2016)
Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean-field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)
Fefferman, Ch.L., de la Llave, R.: Relativistic Stability of Matter - I. Rev. Mat. Iberoam. 2(2), 119–213 (1986)
Figalli, A., Ligabò, M., Paul, T.: Semiclassical limit for mixed states with singular and rough potentials. Indiana Univ. Math. J. 61(1), 193–222 (2013)
Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23–50 (2011)
Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223, 57–94 (2017)
Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6, 977–997 (1994)
Hainzl, C., Seiringer, R.: General decomposition of radial functions on \({\mathbb{R}}^n\) and applications to N-body quantum systems. Lett. Math. Phys. 61(1), 75–84 (2002)
Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)
Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)
Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9, 553–618 (1993)
Markowich, P.A., Mauser, N.J.: The classical limit of a self-consistent quantum Vlasov equation. Math. Model. Methods Appl. Sci. 3(1), 109–124 (1993)
Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)
Petrat, S.: Hartree corrections in a mean-field limit for fermions with Coulomb interaction. J. Phys. A Math. Theor. (24), 244004 (2017) (19 pp.)
Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), 51 pp. (2016)
Porta, M., Rademacher, S., Saffirio, C., Schlein, B.: Mean-field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166, 1345–1364 (2017)
Solovej, J.P.: Many Body Quantum Mechanics. Lecture Notes. Summer 2007. www.mathematik.uni-muenchen.de/~lowsorensen/Lehre/SoSe2013/MQM2/skript.pdf
Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)
Acknowledgements
The author is supported by the grant SNSF Ambizione PZ00P2_161287/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Kinetic Energy Estimates
A Kinetic Energy Estimates
To bound the \(L^{5/3}\) norm of the density \(\rho _t\), we observe that the Lieb–Thirring inequality and the positivity of the interaction potential yield
where \(\mathcal {E}_\mathrm{HF}\) is the Hartree–Fock energy functional defined in (1.4). Conservation of energy implies
To close the estimate using the assumption on the kinetic energy of the initial sequence \(\mathrm{{tr}}\ (-\varepsilon ^2\Delta )\omega _{N}\le C\,N\), we observe that the potential energy can be bounded by the kinetic energy. Indeed, the Hardy–Littlewood–Sobolev inequality yields
By interpolation, using that \(\frac{6}{6-\alpha }\in \left( 1,\frac{5}{3}\right) \) and \(\Vert \rho _0\Vert _{L^1}=N\), we have
where in the last line we have used Young’s inequality \(ab\le \frac{a^p}{p}+\frac{b^q}{q}\), \(p^{-1}+q^{-1}=1\), on the quantities \(a=N^{1-\frac{\alpha }{2}}\) and \(b=N^{-\frac{\alpha }{3}}\Vert \rho _0\Vert _{L^{\frac{5}{3}}}^{\frac{5}{6}\alpha }\) with \(p=2/(2-\alpha )\) and \(q=2/\alpha \). Thus, applying again the Lieb–Thirring inequality and recalling that \(\varepsilon =N^{-1/3}\), we obtain
which gives the bound
thanks to assumption (i).
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Saffirio, C. (2018). Mean-Field Evolution of Fermions with Singular Interaction. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds) Macroscopic Limits of Quantum Systems. MaLiQS 2017. Springer Proceedings in Mathematics & Statistics, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-01602-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-01602-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01601-2
Online ISBN: 978-3-030-01602-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)