BSDEs with Default Jump

  • Roxana Dumitrescu
  • Miryana Grigorova
  • Marie-Claire Quenez
  • Agnès SulemEmail author
Conference paper
Part of the Abel Symposia book series (ABEL, volume 13)


We study (nonlinear) Backward Stochastic Differential Equations (BSDEs) driven by a Brownian motion and a martingale attached to a default jump with intensity process λ = (λt). The driver of the BSDEs can be of a generalized form involving a singular optional finite variation process. In particular, we provide a comparison theorem and a strict comparison theorem. In the special case of a generalized λ-linear driver, we show an explicit representation of the solution, involving conditional expectation and an adjoint exponential semimartingale; for this representation, we distinguish the case where the singular component of the driver is predictable and the case where it is only optional. We apply our results to the problem of (nonlinear) pricing of European contingent claims in an imperfect market with default. We also study the case of claims generating intermediate cashflows, in particular at the default time, which are modeled by a singular optional process. We give an illustrating example when the seller of the European option is a large investor whose portfolio strategy can influence the probability of default.


  1. 1.
    Ankirchner, S., Blanchet-Scalliet, C., Eyraud-Loisel, A.: Credit risk premia and quadratic BSDEs with a single jump. Int. J. Theor. App. Fin. 13(7), 1103–1129 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics and Stochastics Reports (1995)Google Scholar
  3. 3.
    Bielecki, T., Jeanblanc, M., Rutkowski, M.: Hedging of defaultable claims. In: Bielecki, T.R. et al. (eds.) Paris-Princeton Lectures on Mathematical Finance. Lecture Notes in Mathematics 1847, pp. 1–132. Springer (2004). ISBN:3-540-22266-9.
  4. 4.
    Bielecki, T., Jeanblanc, M., Rutkowski, M.: PDE approach to valuation and hedging of credit derivatives. Quant. Finan. 5, 257–270 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bielecki, T., Crepey, S., Jeanblanc, M., Rutkowski, M.: Defaultable game options in a hazard process model. Int. J. Stoch. Anal. 2009, 1–33 (2009)zbMATHGoogle Scholar
  6. 6.
    Blanchet-Scalliet, C., Eyraud-Loisel, A., Royer-Carenzi, M.: Hedging of defaultable contingent claims using BSDE with uncertain time horizon. Le bulletin français d’actuariat 20(10), 102–139 (2010)Google Scholar
  7. 7.
    Brigo, D., Franciscello, M., Pallavicini, A.: Analysis of nonlinear valuation equations under credit and funding effects. In: Glau, K., Grbac, Z., Scherer, M., Zagst, R. (eds.) Innovations in Derivative Markets, Springer Proceedings in Mathematics and Statistics, vol. 165, pp. 37–52. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  8. 8.
    Crepey, S.: Bilateral counterparty risk under funding constraints Part I: CVA. Pricing. Math. Financ. 25(1), 1–22 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel, Chaps. I–IV. Nouvelle édition. Hermann. MR0488194 (1975)Google Scholar
  10. 10.
    Delong, L.: Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. EAA Series. Springer, London/New York (2013)Google Scholar
  11. 11.
    Dumitrescu, R., Quenez, M.-C., Sulem, A.: Generalized dynkin games and doubly reflected BSDEs with jumps. Electron. J. Probab. 21(64), 32 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dumitrescu, R., Quenez, M.-C., Sulem, A.: Game options in an imperfect market with default. SIAM J. Financ. Math. 8, 532–559 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dumitrescu, R., Quenez, M.-C., Sulem, A.: American options in an imperfect complete market with default. ESAIM Proc. Surv. (2018, to appear)Google Scholar
  14. 14.
    Grigorova, M., Quenez, M.-C., Sulem, A.: \(\mathscr {E}^g\)-pricing of American options in incomplete markets with default. (2018), manuscriptGoogle Scholar
  15. 15.
    El Karoui, N., Quenez, M.C.: Non-linear pricing theory and backward stochastic differential equations. In: Runggaldier, W.J. (ed.) Collection. Lectures Notes in Mathematics 1656, Bressanone, 1996. Springer (1997)Google Scholar
  16. 16.
    Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance, London (2009)CrossRefGoogle Scholar
  17. 17.
    Korn, R.: Contingent claim valuation in a market with different interest rates. Math. Meth. Oper. Res. 42, 255–274 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kusuoka, S.: A remark on default risk models. Adv. Math. Econ. 1, 69–82 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lim, T., Quenez, M.-C.: Exponential utility maximization in an incomplete market with defaults. Electron. J. Probab. 16(53), 1434–1464 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peng, S.: Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. Lecture Notes in Mathematics, pp. 165–253. Springer, Berlin (2004)Google Scholar
  21. 21.
    Quenez, M.-C., Sulem, A.: BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Process. Appl. 123, 3328–3357 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Process. Appl. 116, 1358–1376 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Roxana Dumitrescu
    • 1
  • Miryana Grigorova
    • 2
  • Marie-Claire Quenez
    • 3
  • Agnès Sulem
    • 4
    • 5
    Email author
  1. 1.Department of MathematicsKing’s College LondonLondonUK
  2. 2.Centre for Mathematical EconomicsUniversity BielefeldBielefeldGermany
  3. 3.Laboratoire de probabilités, statistiques et modélisations (CNRS/Sorbonne Université/Université Paris Diderot)Université Paris 7ParisFrance
  4. 4.INRIA ParisParis Cedex 12France
  5. 5.Université Paris-EstChamps-sur-MarneFrance

Personalised recommendations