Skip to main content

Gog and Magog Triangles

  • Conference paper
  • First Online:
Computation and Combinatorics in Dynamics, Stochastics and Control (Abelsymposium 2016)

Part of the book series: Abel Symposia ((ABEL,volume 13))

Included in the following conference series:

Abstract

We survey the problem of finding an explicit bijection between Gog and Magog triangles, a combinatorial problem which has been open since the 1980s. We give some of the ideas behind a recent approach to this question and also prove some properties of the distribution of inversions and coinversions in Gog triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the first version of this paper the statement of this proposition was incorrect. I would like to thank the referees for pointing out the mistake.

References

  1. Andrews G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its Applications, vol. 2. Addison-Wesley Publishing Co., Reading/London/Amsterdam (1976)

    Google Scholar 

  2. Andrews G.E.: Plane partitions. V. The TSSCPP conjecture. J. Combin. Theor. Ser. A 66(1), 28–39 (1994)

    Article  MathSciNet  Google Scholar 

  3. Ayyer, A., Romik, D.: New enumeration formulas for alternating sign matrices and square ice partition functions. Adv. Math. 235, 161–186 (2013)

    Article  MathSciNet  Google Scholar 

  4. Baxter, R.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)

    MATH  Google Scholar 

  5. Behrend R.E.: Multiply-refined enumeration of alternating sign matrices. Adv. Math. 245, 439–499 (2013)

    Article  MathSciNet  Google Scholar 

  6. Behrend, R.E., Di Francesco, P., Zinn-Justin, P.: On the weighted enumeration of alternating sign matrices and descending plane partitions. J. Combin. Theor. Ser. A 119(2), 331–363 (2012)

    Article  MathSciNet  Google Scholar 

  7. Berenstein, A.D., Kirillov, A.N.: Groups generated by involutions, Gelfand-Tsetlin patterns and combinatorics of Young tableaux. St. Petersburg Math. J. 7(1), 77–127 (1996)

    Google Scholar 

  8. Bettinelli, J.: A simple explicit bijection between (n,2)-Gog and Magog trapezoids. Lotharingien Séminaire Lotharingien de Combinatoire 75, 1–9 (2016). Article B75e

    Google Scholar 

  9. Biane, P., Cheballah, H.: Gog and Magog triangles and the Schützenberger involution. Séminaire Lotharingien de Combinatoire, B66d (2012)

    Google Scholar 

  10. Biane, P., Cheballah, H.: Gog and GOGAm pentagons. J. Combin. Theor. Ser. A 138, 133–154 (2016) JCTA

    Article  MathSciNet  Google Scholar 

  11. Bressoud D.M.: Proofs and Confirmations, the Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  12. Cantini, L., Sportiello, A.: Proof of the Razumov-Stroganoff conjecture. J. Combin. Theor. Ser. A 118(5), 1549–1574 (2011)

    Article  Google Scholar 

  13. Fischer I.: A new proof of the refined alternating sign matrix theorem. J. Combin. Theor. Ser. A 114(2), 253–264 (2007)

    Article  MathSciNet  Google Scholar 

  14. Fomin, S., Zelevinsky, A.: The Laurent phenomenon. Adv. Appl. Math. 28, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  15. Fulton, W.: Young Tableaux. London Mathematical Society, Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  16. Izergin, A.G.: Partition function of a six vertex model in a finite volume. Soviet Phys. Dokl. 32, 878–879 (1987)

    MATH  Google Scholar 

  17. Kuperberg G.: Another proof of the alternating sign matrix conjecture. Int. Math. Res. Not. 1996, 139–150 (1996)

    Article  MathSciNet  Google Scholar 

  18. Krattenthaler, C.: A Gog-Magog conjecture. http://www.mat.univie.ac.at/~kratt/artikel/magog.html

  19. Lascoux, A., Schützenberger, M.P.: Treillis et bases des groupes de Coxeter. Electron. J. Combin. 3(2), 27, 35pp (1996)

    Google Scholar 

  20. van Leeuwen, M.A.: Flag varieties and interpretations of Young tableaux algorithms. J. Algebra 224, 397–426 (2000)

    Article  MathSciNet  Google Scholar 

  21. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. With contributions by Zelevinsky, A. Oxford Mathematical Monographs. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1995)

    Google Scholar 

  22. Mills, W.H., Robbins, D.P., Rumsey, H.: Self complementary totally symmetric plane partitions. J. Combin. Theor. Ser. A 42, 277–292 (1986)

    Article  MathSciNet  Google Scholar 

  23. Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook. Part III. Springer, New York (2012)

    Google Scholar 

  24. Robbins, D.P., Rumsey, H.: Determinants and alternating sign matrices. Adv. Math. 62, 169–184 (1986)

    Article  MathSciNet  Google Scholar 

  25. Razumov, A.V., Stroganov, Y.G.: Combinatorial nature of ground state vector of O(1) loop model. Theor. Math. Phys. 138, 333–337 (2004)

    Article  MathSciNet  Google Scholar 

  26. Stembridge, J.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83, 96–131 (1990)

    Article  MathSciNet  Google Scholar 

  27. Striker, J.: A direct bijection between permutations and a subclass of totally symmetric self-complementary plane partitions. In: 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Paris, pp. 803–812. Discrete Mathematics and Theoretical Computer Science Proceedings, AS

    Google Scholar 

  28. Zeilberger, D.: Proof of the alternating sign matrix conjecture. Electron. J. Combin. 3, R13 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Biane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biane, P. (2018). Gog and Magog Triangles. In: Celledoni, E., Di Nunno, G., Ebrahimi-Fard, K., Munthe-Kaas, H. (eds) Computation and Combinatorics in Dynamics, Stochastics and Control. Abelsymposium 2016. Abel Symposia, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-01593-0_4

Download citation

Publish with us

Policies and ethics