Fluorescence Lifetime Distribution Brings Out Mechanisms Involving Biomolecules While Quantifying Population Heterogeneity

  • G. KrishnamoorthyEmail author
Part of the Reviews in Fluorescence book series (RFLU)


Flexibility and motional dynamics in biological macromolecules give rise to conformational and structural heterogeneity. Quantification of the level of heterogeneity is essential for providing deeper understanding of molecular mechanisms in biology. Fluorescence lifetime distribution generated by the Maximum Entropy Method (MEM) provides an unbiased estimate of structural heterogeneity. This chapter discusses several examples where MEM-generated lifetime distribution brings out site-specific conformational and structural heterogeneity in proteins and membranes. Use of the information on heterogeneity in revealing molecular mechanisms is also discussed.


Structural heterogeneity Fluorescence lifetime distribution Maximum entropy method Protein folding Molecular crowding Synuclein Nile red Gramicidine Bipolar lipid membrane Fusion peptide 



The authors thank Profs. Jayant Udgaonkar, Deepak Dhar, Amitabha Chattopadhyay, N. Periasamy, and Samir Maji and Drs. G.S. Lakshmikanth, K. Sridevi, Megha Kishore, Santosh Jha, Samsuzzoha Mondal, Shruti Sahay, Sourav Haldar, Soumi Mukherjee and Hirak Chakravorty for their collaboration in the research work described here. Prof. N. Periasamy is thanked for providing the software used in the analysis of time-domain fluorescence data, and for his advice in using it effectively.


  1. 1.
    Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450:913–916CrossRefGoogle Scholar
  2. 2.
    Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways and the energy landscape of protein folding. Proteins 21:167–195CrossRefGoogle Scholar
  3. 3.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy., 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Ishima R, Torchia D (2000) Protein dynamics from NMR. Nat Struct Mol Biol 76:145–152Google Scholar
  5. 5.
    Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology waits for physics. Protein Sci 22:693–724CrossRefGoogle Scholar
  6. 6.
    Navon A, Ittah V, Landsman P, Scheraga HA, Haas E (2001) Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Biochemistry 40:105–118CrossRefGoogle Scholar
  7. 7.
    Alcala JR, Gratton E, Prendergast FG (1987) Fluorescence lifetime distribution in proteins. Biophys J 51:597–604CrossRefGoogle Scholar
  8. 8.
    Brochon JC (1994) Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol 240:262–311CrossRefGoogle Scholar
  9. 9.
    Swaminathan R, Krishnamoorthy G, Periasamy N (1994) Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state. Biophys J 67:2013–2023CrossRefGoogle Scholar
  10. 10.
    Swaminathan R, Periasamy N (1996) Analysis of fluorescence decay by maximum entropy method: influence of noise and analysis parameters on the width of the distribution of lifetimes. Proc Indian Acad Sci.(Chem. Sci.) 108:39–49Google Scholar
  11. 11.
    O’Connor D (1984) Time-correlated single photon counting. Elsevier, LondonGoogle Scholar
  12. 12.
    Krishnamoorthy G, Ira (2001) Fluorescence lifetime distribution in characterizing membrane microheterogeneity. J Fluoresc 11:247–253CrossRefGoogle Scholar
  13. 13.
    Krishnamoorthy G (2012) Motional dynamics in proteins and nucleic acids control their function: revelation by time-domain fluorescence. Curr Sci 102:266–276Google Scholar
  14. 14.
    Swaminathan R, Nath U, Udgaonkar J, Periasamy N, Krishnamoorthy G (1996) Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of Barstar. Biochemistry 35:9150–9157CrossRefGoogle Scholar
  15. 15.
    Lakshmikanth GS, Sridevi K, Krishnamoorthy G, Udgaonkar JB (2011) Structure is lost incrementally during the unfolding of barstar. Nat Struct Biol 8:799–804CrossRefGoogle Scholar
  16. 16.
    Tanford C (1970) Protein denaturation. Adv Protein Chem 24:1–95CrossRefGoogle Scholar
  17. 17.
    Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. Evidence for a two-state transition. Biochemistry 30:10428–10435CrossRefGoogle Scholar
  18. 18.
    Plaxco KW, Simons KT, Ruczinski I, Baker D (2000) Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183CrossRefGoogle Scholar
  19. 19.
    Finkelstein AV, Shakhnovich EI (1989) Theory of cooperative transitions in protein molecules. II Phase diagram for a protein molecule in solution. Biopolymers 28:1681–1694CrossRefGoogle Scholar
  20. 20.
    Finkelstein AV, Ptitsyn OB (2002) Protein Physics. Academic, CambridgeGoogle Scholar
  21. 21.
    Abkevich VI, Gutin AM, Shakhnovich EI (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33:10026–10036CrossRefGoogle Scholar
  22. 22.
    Jha SK, Dhar D, Krishnamoorthy G, Udgaonkar JB (2009) Continuous dissolution of structure during the unfolding of a small protein. Proc Natl Acad Sci U S A 106:11113–11118CrossRefGoogle Scholar
  23. 23.
    Kishore M, Krishnamoorthy G, Udgaonkar JB (2013) Critical evaluation of the two-state model describing the equilibrium unfolding of the P13K SH3 domain by time-resolved fluorescence resonance energy transfer. Biochemistry 52:9482–9496CrossRefGoogle Scholar
  24. 24.
    Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580CrossRefGoogle Scholar
  25. 25.
    Mondal S, Kallianpur MV, Udgaonkar JB, Krishnamoorthy G (2016) Molecular crowding causes narrowing of population heterogeneity and restricts internal dynamics in a protein. Methods Appl Fluoresc 4:014003CrossRefGoogle Scholar
  26. 26.
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodie. Proc Natl Acad Sci U S A 95:6469–6473CrossRefGoogle Scholar
  27. 27.
    Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978CrossRefGoogle Scholar
  28. 28.
    Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–25563CrossRefGoogle Scholar
  29. 29.
    Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386CrossRefGoogle Scholar
  30. 30.
    Sahay S, Krishnamoorthy G, Maji SK (2016) Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescenc spectroscopy: a review. Methods Appl Fluoresc 4:042002CrossRefGoogle Scholar
  31. 31.
    Sahay S, Anoop A, Krishnamoorthy G, Maji SK (2014) Site-specific fluorescence dynamics of α-Synuclein fibrils using time-resolved fluorescence studies: effect of familial Parkinson’s disease-associated mutations. Biochemistry 53:807–809CrossRefGoogle Scholar
  32. 32.
    Sahay S, Ghosh D, Dwivedi S, Anoop A, Kombrabail M, Mohite GM, Krishnamoorthy G, Maji SK (2015) Familial Parkinson's disease associated mutations alter the site-specific microenvironment and dynamics of α-Synuclein. J Biol Chem 290:7804–7822CrossRefGoogle Scholar
  33. 33.
    Veatch WR, Fossel ET, Blout ER (1974) The conformation of gramicidin A. Biochemistry 13:5249–5256CrossRefGoogle Scholar
  34. 34.
    Zein M, Winter R (2000) Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipidgramicidin bilayers. Phys Chem Chem Phys 2:4545–4551CrossRefGoogle Scholar
  35. 35.
    Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848CrossRefGoogle Scholar
  36. 36.
    Rawat SS, Kelkar DA, Chattopadhyay A (2004) Monitoring gramicidin conformations in membranes: a fluorescence approach. Biophys J 87:831–843CrossRefGoogle Scholar
  37. 37.
    Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2010) Monitoring membrane protein conformational heterogeneity by fluorescence lifetime distribution analysis using the maximum entropy method. J Fluoresc 20:407–413CrossRefGoogle Scholar
  38. 38.
    Haldar S, Chaudhuri A, Gu H, Koeppe R, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Membrane organization and dynamics of ‘inner pair’ and ‘outer pair’ tryptophan residue in gramicidin channels. J Phys Chem B 116:11056–11064CrossRefGoogle Scholar
  39. 39.
    Gu H, Lum K, Kim JH, Greathouse DV, Andersen OS, Koeppe RE (2011) The membrane Interface dictates different anchor roles for “inner pair” and “outer pair” tryptophan indole rings in gramicidin a channels. Biochemistry 50:4855–4866CrossRefGoogle Scholar
  40. 40.
    Ira KG (1998) Probing the dynamics of planar supported membranes by Nile red fluorescence lifetime distribution. Biochim Biophys Acta 1414:255–225CrossRefGoogle Scholar
  41. 41.
    Mukherjee S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2007) Dynamics and heterogeneity of bovine hippocampal membranes: role of cholesterol and proteins. Biochim Biophys Acta 1768:2130–2144CrossRefGoogle Scholar
  42. 42.
    Sharma P, Varma R, Sarasij RC, Ira GK, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577–589CrossRefGoogle Scholar
  43. 43.
    Haldar S, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2012) Depth-dependent heterogeneity in membranes by fluorescence lifetime distribution analysis. J Phys Chem Lett 3:2676–2681CrossRefGoogle Scholar
  44. 44.
    De Rosa M, Gambacorta A, Nicolaus B, Chappe B, Albrecht P (1983) Isoprenoid ethers: backbone of complex lipids of the Archaebacterium Sulfolobus solfataricus. Biochim Biophys Acta, Lipids Lipid Metab 753:249–256CrossRefGoogle Scholar
  45. 45.
    Chakraborty H, Haldar S, Lee-Gau Chong P, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2015) Depth-dependent organization and dynamics of archaeal and eukaryotic membranes: development of membrane anisotropy gradient with natural evolution. Langmuir 31:11591–11597CrossRefGoogle Scholar
  46. 46.
    Hughson FM (1997) Enveloped viruses: a common mode of membrane fusion? Curr Biol 7:565–569CrossRefGoogle Scholar
  47. 47.
    Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569CrossRefGoogle Scholar
  48. 48.
    Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102:11–23CrossRefGoogle Scholar
  49. 49.
    Chakraborty H, Lentz BR, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2017) Depth-dependent membrane ordering by hemagglutinin fusion peptide promotes fusion. J Phys Chem B 121:1640–1648CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyAnna UniversityChennaiIndia
  2. 2.Department of ChemistryIndian Institute of TechnologyMumbaiIndia

Personalised recommendations