Advertisement

Game Theoretic Security Framework for Quantum Key Distribution

  • Walter O. KrawecEmail author
  • Fei Miao
Conference paper
  • 855 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11199)

Abstract

In this paper, we propose a game-theoretic model of security for quantum key distribution (QKD) protocols. QKD protocols allow two parties to agree on a shared secret key, secure against an adversary bounded only by the laws of physics (as opposed to classical key distribution protocols which, by necessity, require computational assumptions to be placed on the power of an adversary). We investigate a novel framework of security using game theory where all participants (including the adversary) are rational. We will show that, in this framework, certain impossibility results for QKD in the standard adversarial model of security still remain true here. However, we will also show that improved key-rate efficiency is possible in our game-theoretic security model.

Keywords

Quantum cryptography Game theory Security 

References

  1. 1.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)CrossRefGoogle Scholar
  2. 2.
    Katz, J.: Bridging game theory and cryptography: recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_15CrossRefzbMATHGoogle Scholar
  3. 3.
    Miao, F., Zhu, Q., Pajic, M., Pappas, G.J.: A hybrid stochastic game for secure control of cyber-physical systems. Automatica 93, 55–63 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhu, Q., Basar, T.: Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control Syst. 35(1), 46–65 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Manshaei, M., Zhu, Q., Alpcan, T., Basar, T., Hubaux, J.: Game theory meets network security and privacy. ACM Comput. Surv. 45(3), 25:1–25:39 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhu, M., Martinez, S.: Stackelberg-game analysis of correlated attacks in cyber-physical systems. In: American Control Conference, ACC, pp. 4063–4068, June 2011Google Scholar
  7. 7.
    Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)CrossRefGoogle Scholar
  8. 8.
    Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhou, L., Sun, X., Su, C., Liu, Z., Choo, K.K.R.: Game theoretic security of quantum bit commitment. Inf. Sci. (2018)Google Scholar
  10. 10.
    Maitra, A., Paul, G., Pal, A.K.: Millionaires problem with rational players: a unified approach in classical and quantum paradigms. arXiv preprint (2015)Google Scholar
  11. 11.
    Qin, H., Tang, W.K., Tso, R.: Establishing rational networking using the DL04 quantum secure direct communication protocol. Quantum Inf. Process. 17(6), 152 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Das, B., Roy, U., et al.: Cooperative quantum key distribution for cooperative service-message passing in vehicular ad hoc networks. Int. J. Comput. Appl. 102, 37–42 (2014). ISSN 0975 8887Google Scholar
  13. 13.
    Houshmand, M., Houshmand, M., Mashhadi, H.R.: Game theory based view to the quantum key distribution BB84 protocol. In: 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, IITSI, pp. 332–336. IEEE (2010)Google Scholar
  14. 14.
    Kaur, H., Kumar, A.: Game-theoretic perspective of Ping-Pong protocol. Phys. A: Stat. Mech. Appl. 490, 1415–1422 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)CrossRefGoogle Scholar
  16. 16.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)CrossRefGoogle Scholar
  17. 17.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  18. 18.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, vol. 175 (1984)Google Scholar
  19. 19.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)CrossRefGoogle Scholar
  21. 21.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)CrossRefGoogle Scholar
  22. 22.
    Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Krawec, W.O.: Quantum key distribution with mismatched measurements over arbitrary channels. Quantum Inf. Comput. 17(3), 209–241 (2017)MathSciNetGoogle Scholar
  24. 24.
    Phoenix, S.J., Barnett, S.M., Townsend, P.D., Blow, K.: Multi-user quantum cryptography on optical networks. J. Mod. Opt. 42(6), 1155–1163 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations