Advertisement

Toward a Smart Pedagogy: Devising a Methodology for Innovation

  • Alvino Moser
  • Luciano F. de MedeirosEmail author
Chapter

Abstract

A plethora of practical suggestions could be considered to make pedagogy smarter, more active, and attractive to students while simultaneously being efficient and obtaining results. Creative suggestions are not always innovative. In order to achieve innovation, an interesting method is proposed by Jean-Charles Cailliez and described here, consisting of four main steps: (i) following the path indicated by Boethius and Thomas Aquinas in the Middle Ages to acquire a mens ingeniosa, a kind of creative imagination resulting in inspiration, properly obtained from a few conditions and possibilities, restricted by appropriate observations, and underpinned by correct prospections; (ii) insight and enlightenment for the ideation of creativity will be greatly facilitated by co-design within a team; (iii) after the ideation, generated by inspiration, then comes the time for implementation, that is, creating prototypes of projects in an interactive manner and generating pedagogical actions capable of being tested by experimentation; and (iv) innovation, when the idea materializes itself and may be carried out and be useful. Nevertheless, innovation requires steps of its own, such as incubation, creation of a pilot project, testing, acquiring value, and devising possible uses. For any hypothetical use of an idea, creativity indicates when, how, and in which contexts we should use it. Next, we must design an experiment in order to know how efficient of a pedagogical strategy it is and, eventually, have such resource available for specific, didactic goals. Pedagogy should not be centered only on unique and exclusive resources, but ensure an articulated relationship with other resources. A final discussion is proposed considering whether a smart pedagogy will require smart technologies, with some indications about the importance of the role of advanced technologies, such as artificial intelligence, in such innovation scenarios.

Keywords

Philosophy of education Innovative methodologies Smart pedagogy Flipped classroom DIY workers 

References

  1. Borba, M., & Villareal, M. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization (Springer, Ed.). New York: Springer.Google Scholar
  2. Borge, N. (2016). Artificial intelligence to improve education/learning challenges. International Journal of Advanced Engineering & Innovative Technology, 2(6), 10–13.Google Scholar
  3. Cailliez, J. C. (2017). La Classe Renversée : L’innovation pédagogique par le changement de posture [The flipped classroom: Educational innovation through postural change] (Ellipses, Ed.). Paris: Ellipses.Google Scholar
  4. Carr, N. G. (2011). A Geração Superficial: O que a internet está fazendo com os nossos cérebros [The Shallows: What the Internet Is Doing to Our Brains]. Rio de Janeiro: Agir.Google Scholar
  5. Carreira, S. (2009). Matemática e tecnologias–Ao encontro dos “nativos digitais” com os “manipulativos virtuais” [Math and technologies – toward to the “digital natives” with the “virtual manipulatives”]. Quadrante–Revista de Investigação Em Educação Matemática, 8(1), 53–85.Google Scholar
  6. de Carvalho, J. F. (2015). A gênese da bomba [The genesis of the nuclear bomb]. Estudos Avançados, 29, 197–208. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-40142015000200197&nrm=isoCrossRefGoogle Scholar
  7. de Certeau, M. (1990). L’invention du quotidien 1: Arts de faires [The invention of everyday life 1: Arts of doing]. Paris: Gallimard.Google Scholar
  8. Dedehayir, O., & Steinert, M. (2016). Technological forecasting & social change the hype cycle model : A review and future directions. Technological Forecasting and Social Change, 108, 28–41.  https://doi.org/10.1016/j.techfore.2016.04.005CrossRefGoogle Scholar
  9. Dennett, D. C. (1997). Tipos de Mentes [Kinds of Minds]. Rio de Janeiro: Ed. Rocco.Google Scholar
  10. Depraz, N. (2011). Compreender Husserl [Understanding Husserl]. (Vozes, Ed.). Petrópolis-RJ: Vozes.Google Scholar
  11. Hadamard, J. (2009). Psicologia da Invenção na Matemática [Psychology of invention in mathematics] (Contraponto, Ed.). Rio de Janeiro: Contraponto.Google Scholar
  12. Komis, V., Romero, M., & Misirli, A. (2017). A scenario-based approach for designing educational robotics activities for co-creative problem solving. Advances in Intelligent Systems and Computing, 560, 158–169. Retrieved from https://www.researchgate.net/profile/Margarida_ROMERO/publication/315066572_A_Scenario-Based_Approach_for_Designing_Educational_Robotics_Activities_for_Co-creative_Problem_Solving/links/59c82ac20f7e9bd2c0146b8d/A-Scenario-Based-Approach-for-Designing-Educational-Robotics-Activities-for-Co-creative-Problem-Solving.pdf
  13. Lévi-Strauss, C. (2012). La pensée sauvage [The wild thinking] (12a ed.). Campinas-SP: Papirus.Google Scholar
  14. Maffesoli, M. (2009). A República dos Bons Sentimentos [The republic of good feelings] (Iluminuras, Ed.). São Paulo: Iluminuras.Google Scholar
  15. Manacorda, M. A. (2006). História da Educação: da Antiguidade aos nossos dias [History of education: From ancient era to our days] (Cortez, Ed.) (12a ed.). São Paulo, Brazil: Cortez.Google Scholar
  16. Medeiros, L. F., Moser, A., & Santos, N. (2014). A simulação computacional como técnica de pesquisa na administração [The computational simulation as a research technique in management]. Revista Intersaberes, 9(especial), 441–459.Google Scholar
  17. Mitra, S. (2008). O Furo na Parede [The hole in the wall: Self-organizing systems in education] (SENAC, Ed.). Rio de Janeiro: SENAC.Google Scholar
  18. O’Neill, A. S. (1960). Summerhill-A radical approach to child rearing (H. P. Company, Ed.). New York: Company, Hart Publishing.Google Scholar
  19. Papert, S. (2008). A Máquina das Crianças: repensando a escola na era da informática [The children’s machine: Rethinking the school in the age of the computer]. Porto Alegre: Artmed.Google Scholar
  20. Paty, M. (2001). A criação científica segundo Poincaré -Einstein [The scientific creation according with Poincaré-Einstein]. Estudos Avançados, 15, 157–192. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-40142001000100013&nrm=isoCrossRefGoogle Scholar
  21. Plato. (2011). Phaedrus (Martin Claret, Ed.). São Paulo, Brazil: Martin Claret.Google Scholar
  22. Prensky, M. (2001). Digital natives, Digital Immigrants Part 1. On the Horizon, 9(5), 1–6.  https://doi.org/10.1108/10748120110424816CrossRefGoogle Scholar
  23. Rancière, J. (2002). O mestre ignorante: Cinco lições sobre a emancipação intelectual [The ignorant master: Five lessons on intellectual emancipation] (Autêntica, Ed.). Belo Horizonte.Google Scholar
  24. Rogers, C. (1961). On becoming a person: A therapist’s view of psychotherapy (Constable, Ed.). London: Constable.Google Scholar
  25. Romano, M., & Cifelli, R. (2015). 100 years of continental drift. Science, 350(November), 10–13.  https://doi.org/10.1126/science.aad6230CrossRefGoogle Scholar
  26. Rothenberg, A. (1995). Creative cognitive processes in Kekule’s discovery of the structure of the benzene molecule. The American Journal of Psychology, 108(3), 419–438.  https://doi.org/10.2307/1422898CrossRefGoogle Scholar
  27. Siqueira, A. (1943). Filosofia da Educação [Philosophy of education] (Vozes, Ed.). Petrópolis-RJ: Vozes.Google Scholar
  28. Teachthought. (2014). 10 roles for artificial intelligence in education. Retrieved from https://www.teachthought.com/the-future-of-learning/10-roles-for-artificial-intelligence-in-education/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Program of Master in Education and New TechnologiesUNINTER International Universitary CenterParanáBrasil

Personalised recommendations