Skip to main content

[18F]FDG-PET/CT in Movement Disorders

  • Chapter
  • First Online:
PET/CT in Brain Disorders

Part of the book series: Clinicians’ Guides to Radionuclide Hybrid Imaging ((PET/CT))

  • 880 Accesses

Abstract

Movement disorders are defined as neurologic syndromes in which there is either an excess of movement or a scarcity of voluntary and automatic movements, unrelated to weakness or spasticity [1]. Movement disorders are related to dysfunction of different nervous system structures involved in the modulation and regulation of movement. Among them the basal ganglia, cerebellum, cortex, and different thalamic nuclei represent the dynamic assembly that is differently impaired in movement disorder syndromes. The broad set of functions regulated by those neuronal circuits may explain the variability and richness of clinical signs in different domains expressed by patients with movement disorders. Different neurodegenerative or acquired central nervous system diseases that affect any part of this circuitry may cause movement disorders, which in many of the cases are of neurodegenerative nature. From a classification perspective, movement disorders are classified by the clinical phenomenology of the movement disorders (parkinsonian syndromes, tremor, chorea, myoclonia, dystonia, and ataxias) and are grossly subdivided in hypokinetic and hyperkinetic movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahn S. Classification of movement disorders. Mov Disord. 2011;26:947–57.

    Article  PubMed  Google Scholar 

  2. Meyer PT, Frings L, Rücker G, Hellwig S. 18F-FDG PET in parkinsonism: differential diagnosis and cognitive impairment in Parkinson’s disease. J Nucl Med. 2017b;58:1888–98.

    Article  CAS  PubMed  Google Scholar 

  3. Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86: 566–76.

    Article  PubMed  Google Scholar 

  4. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang CC, Poston KL, Eckert T, Feigin A, Frucht S, Gudesblatt M, et al. Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis. Lancet Neurol. 2010;9:149–58.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–76.

    Article  PubMed  Google Scholar 

  7. Jellinger KA. The pathomechanisms underlying Parkinson’s disease. [Internet]. Expert Rev Neurother. 2014b;14:199–215.

    Article  CAS  PubMed  Google Scholar 

  8. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab. 1994;14:783–801.

    Article  CAS  PubMed  Google Scholar 

  9. Tripathi M, Dhawan V, Peng S. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013;55:483–92.

    Article  PubMed  Google Scholar 

  10. Firbank MJ, Yarnall AJ, Lawson RA, Duncan GW, Khoo TK, Petrides GS, et al. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson’s disease: ICICLE-PD study. J Neurol Neurosurg Psychiatry. 2017;88:310–6.

    Article  CAS  PubMed  Google Scholar 

  11. Teune LK, Bartels AL, De Jong BM, Willemsen ATM, Eshuis SA, De Vries JJ, et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord. 2010;25:2395–404.

    Article  PubMed  Google Scholar 

  12. Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson’s disease: a metabolic network approach. [Internet]. Lancet Neurol. 2007;6:926–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005;26:912–21.

    Article  PubMed  Google Scholar 

  14. Teune LK, Renken RJ, Mudali D, De Jong BM, Dierckx RA, Roerdink JBTM, et al. Validation of parkinsonian disease-related metabolic brain patterns. Mov Disord. 2013;28:547–51.

    Article  CAS  PubMed  Google Scholar 

  15. Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D. Abnormal metabolic network activity in Parkinson’s disease: test-retest reproducibility. J Cereb Blood Flow Metab. 2007;27:597–605.

    Article  PubMed  Google Scholar 

  16. Tomše P, Jensterle L, Grmek M, Zaletel K, Pirtošek Z, Dhawan V, et al. Abnormal metabolic brain network associated with Parkinson’s disease: replication on a new European sample. Neuroradiology. 2017;59:507–15.

    Article  PubMed  Google Scholar 

  17. Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.

    Article  PubMed  Google Scholar 

  18. Ko JH, Lee CS, Eidelberg D. Metabolic network expression in parkinsonism: clinical and dopaminergic correlations. J Cereb Blood Flow Metab. 2017;37:683–93.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer PT, Frings L, Gerta R, Hellwig S. PET in parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med. 2017a;58:1888–99.

    Article  CAS  PubMed  Google Scholar 

  20. Meles SK, Renken RJ, Janzen AHO, Vadasz D, Pagani M, Arnaldi D, et al. The metabolic pattern of idiopathic REM sleep behavior disorder reflects early-stage Parkinson’s disease. J Nucl Med. 2018;59:1437–44.

    Article  CAS  PubMed  Google Scholar 

  21. Kalbe E, Voges J, Weber T, Haarer M, Baudrexel S, Klein JC, et al. Frontal FDG-PET activity correlates with cognitive outcome after STN-DBS in Parkinson disease. Neurology. 2009;72:42–9.

    Article  CAS  PubMed  Google Scholar 

  22. Cao C, Zhang H, Li D, Zhan S, Zhang J, Zhang X, et al. Modified fluorodeoxyglucose metabolism in motor circuitry by subthalamic deep brain stimulation. Stereotact Funct Neurosurg. 2017;95:93–101.

    Article  PubMed  Google Scholar 

  23. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55.

    Article  CAS  PubMed  Google Scholar 

  24. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. [Internet]. Neurology. 2008;71:670–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jellinger KA. Neuropathology of multiple system atrophy: new thoughts about pathogenesis. Mov Disord. 2014a;29:1720–41.

    Article  CAS  PubMed  Google Scholar 

  26. Boxer AL, Yu JT, Golbe LI, Litvan I, Lang AE, Höglinger GU. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 2017;16:552–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord. 2017;32:853–64.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ling H, O’Sullivan SS, Holton JL, Revesz T, Massey LA, Williams DR, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain. 2010;133:2045–57.

    Article  PubMed  Google Scholar 

  29. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wakabayashi K, Takahashi H. Symposium: Neuropathological diagnostic criteria and problems of neurodegenerative disorders. Pathological heterogeneity in progressive supranuclear palsy and corticobasal degeneration. Ann Neurol. 2004;24:79–86.

    Google Scholar 

  31. Dugger BN, Adler CH, Shill HA, Caviness J, Jacobson S, Driver-Dunckley E, et al. Concomitant pathologies among a spectrum of parkinsonian disorders. Parkinsonism Relat Disord. 2014;20:525–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol. 2010;23:394–400.

    Article  PubMed  Google Scholar 

  33. Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999;53:795–800.

    Article  CAS  PubMed  Google Scholar 

  34. Zalewski N, Botha H, Whitwell JL, Lowe V, Dickson DW, Josephs KA. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol. 2014;261:710–6.

    Article  CAS  PubMed  Google Scholar 

  35. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol. 2014;10:204–16.

    Article  CAS  PubMed  Google Scholar 

  36. Vonsattel JPG, Keller C, Cortes Ramirez EP. Huntington’s disease - neuropathology. 1st ed. Amsterdam: Elsevier B.V.; 2011.

    Google Scholar 

  37. Rüb U, Hentschel M, Stratmann K, Brunt E, Heinsen H, Seidel K, et al. Huntington’s disease (HD): degeneration of select nuclei, widespread occurrence of neuronal nuclear and axonal inclusions in the brainstem. Brain Pathol. 2014;24:247–60.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rüb U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW. Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016;26:726–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain. 1996;119(Pt 6):2085–95.

    Article  PubMed  Google Scholar 

  40. López-Mora DA, Camacho V, Pérez-Pérez J, Martínez-Horta S, Fernández A, Sampedro F, et al. Striatal hypometabolism in premanifest and manifest Huntington’s disease patients [Internet]. Eur J Nucl Med Mol Imaging. 2016;43:2183–9.

    Article  PubMed  CAS  Google Scholar 

  41. Young AB, Penney JB, Starosta-rubinstein S, Markel DS, Berent S, Giordani B, et al. PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986;20:296–303.

    Article  CAS  PubMed  Google Scholar 

  42. Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med. 2006;47:215–22.

    CAS  PubMed  Google Scholar 

  43. Tang CC, Feigin A, Ma Y, Habeck C, Paulsen JS, Leenders KL, et al. Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest. 2013;123:4076–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berent S, Giordani B, Lehtinen S, Markel D, Penney JB, Buchtel HA, et al. Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol. 1988;23:541–6.

    Article  CAS  PubMed  Google Scholar 

  45. Ciarmiello A, Giovacchini G, Orobello S, Bruselli L, Elifani F, Squitieri F. 18F-FDG PET uptake in the pre-Huntington disease caudate affects the time-to-onset independently of CAG expansion size. Eur J Nucl Med Mol Imaging. 2012;39:1030–6.

    Article  CAS  PubMed  Google Scholar 

  46. Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry. 2013;84:650–6.

    Article  PubMed  Google Scholar 

  47. Ehrlich DJ, Walker RH. Functional neuroimaging and chorea: a systematic review. J Clin Mov Disord. 2017;4:8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cui R, You H, Niu N, Li F. FDG PET brain scan demonstrated glucose hypometabolism of bilateral caudate nuclei and putamina in a patient with chorea-acanthocytosis. Clin Nucl Med. 2015;40:979–80.

    Article  PubMed  Google Scholar 

  49. Tanaka M, Hirai S, Kondo S, Sun X, Nakagawa T, Tanaka S, et al. Cerebral hypoperfusion and hypometabolism with altered striatal signal intensity in chorea-acanthocytosis: a combined PET and MRI study. Mov Disord. 1998;13:100–7.

    Article  CAS  PubMed  Google Scholar 

  50. Brockmann K, Reimold M, Globas C, Hauser TK, Walter U, Rolfs A, et al. PET and MRI reveal early evidence of neurodegeneration in spinocerebellar ataxia type 17. J Nucl Med. 2018;53:1074–81.

    Article  Google Scholar 

  51. Weindl A, Kuwert T, Leenders KL, Poremba M, GräFin von Einsiedel H, Antonini A, et al. Increased striatal glucose consumption in sydenham’s chorea. Mov Disord. 1993;8:437–44.

    Article  CAS  PubMed  Google Scholar 

  52. Varrone A, Asenbaum S, Vander BT, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F] FDG, Version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.

    Article  PubMed  Google Scholar 

  53. Booth HDE, Hirst WD, Wade-Martins R. The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. Trends Neurosci. 2017;40:358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol. 2018;135:1–26.

    Article  CAS  Google Scholar 

  55. Schmidt K, Lucignani G, Moresco RM, Rizzo G, Gilardi MC, Messa C, et al. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab. 1992;12:823–34.

    Article  CAS  PubMed  Google Scholar 

  56. Berti V, Mosconi L, Pupi A. Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 2014;9:129–40.

    Article  PubMed  Google Scholar 

  57. Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology. 2001;57:2083–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zimmer ER, Parent MJ, Souza DG, Leuzy A, Lecrux C, Kim H, et al. [18 F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci. 2017;20(3):393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Fazio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazio, P., Varrone, A. (2019). [18F]FDG-PET/CT in Movement Disorders. In: Fraioli, F. (eds) PET/CT in Brain Disorders. Clinicians’ Guides to Radionuclide Hybrid Imaging(). Springer, Cham. https://doi.org/10.1007/978-3-030-01523-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01523-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01522-0

  • Online ISBN: 978-3-030-01523-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics