Skip to main content

Deformable Surface Registration with Extreme Learning Machines

  • Conference paper
  • First Online:
Proceedings of ELM-2017 (ELM 2017)

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 10))

Included in the following conference series:

Abstract

One of the most important open problems in the field of computer-aided design and computer graphics is the task of surface registration for non-isometric cases. One of the approaches of addressing surface registration problem is to find the point-wise correspondence between surfaces using state-of-the-art shape descriptors. This paper introduces an improvement to this approach by means of Extreme Learning Machines. The ELM model is trained to distinguish pairs of corresponding points from non-corresponding ones on the dataset with highly non-isometric distortions between models. The proposed method is compared with original shape descriptors. The results show the increase of accuracy in surface registration task, and also reveal the bottleneck of the state-of-the-art shape descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek, S.Y., Lim, J., Lee, K.: Isometric shape interpolation. Comput. Graph. 46(1), 257–263 (2015)

    Article  Google Scholar 

  2. Kilian, M., Mitra, N.J., Pottmann, H.: Geometric modeling in shape space. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH 2007. ACM, New York (2007)

    Google Scholar 

  3. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. (TOG) 23(3), 399–405 (2004)

    Article  Google Scholar 

  4. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. (TOG) 22(3), 587–594 (2003)

    Article  Google Scholar 

  5. Baek, S.Y., Lee, K.: Parametric human body shape modeling framework for human-centered product design. Comput.-Aided Des. 44(1), 56–67 (2012)

    Article  Google Scholar 

  6. Litman, R., Bronstein, A.M.: Learning spectral descriptors for deformable shape correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 171–180 (2014)

    Article  Google Scholar 

  7. Xie, J., Dai, G., Zhu, F., Wong, E.K., Fang, Y.: DeepShape: deep-learned shape descriptor for 3D shape retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1335–1345 (2017)

    Article  Google Scholar 

  8. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.: Discriminative learning of deep convolutional feature point descriptors. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 118–126 (2015)

    Google Scholar 

  9. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)

    Google Scholar 

  10. Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that ‘understands’ geometry. In: IEEE International Conference on Shape Modeling and Applications, SMI 2006, pp. 13–21. IEEE (2006)

    Google Scholar 

  11. Li, C., Hamza, A.B.: Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey. Multimed. Syst. 20(3), 253–281 (2014)

    Article  Google Scholar 

  12. Bronstein, M.M., Kokkinos, I.: Scale-invariant heat kernel signatures for non-rigid shape recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1704–1711. IEEE (2010)

    Google Scholar 

  13. Aubry, M., Schlickewei, U., Cremers, D.: Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor. In: Joint Pattern Recognition Symposium, pp. 122–131 (2011)

    Google Scholar 

  14. Fang, Y., Sun, M., Kim, M., Ramani, K.: Heat-mapping: a robust approach toward perceptually consistent mesh segmentation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2145–2152. IEEE (2011)

    Google Scholar 

  15. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)

    Article  Google Scholar 

  16. Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)

    Article  Google Scholar 

  17. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  18. Rustamov, R.M.: Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)

    Google Scholar 

  19. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  20. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1626–1633 (2011)

    Google Scholar 

  21. Rosenberg, S.: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds. Number 31 in London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  22. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, pp. 101–106. ACM (2005)

    Google Scholar 

  23. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  24. Lendasse, A., Akusok, A., Simula, O., Corona, F., van Heeswijk, M., Eirola, E., Miche, Y.: Extreme learning machine: a robust modeling technique? yes! In: International Work-Conference on Artificial Neural Networks, pp. 17–35. Springer Heidelberg (2013)

    Chapter  Google Scholar 

  25. Cambria, E.: Extreme learning machines. IEEE Intell. Syst. 28(6), 30–59 (2013)

    Article  Google Scholar 

  26. Akusok, A., Baek, S., Miche, Y., Björk, K.M., Nian, R., Lauren, P., Lendasse, A.: ELMVIS+: fast nonlinear visualization technique based on cosine distance and extreme learning machines. Neurocomputing 205, 247–263 (2016)

    Article  Google Scholar 

  27. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  28. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010)

    Article  Google Scholar 

  29. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011)

    Article  Google Scholar 

  30. Nian, R., He, B., Zheng, B., Van Heeswijk, M., Yu, Q., Miche, Y., Lendasse, A.: Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128, 273–284 (2014)

    Article  Google Scholar 

  31. He, B., Xu, D., Nian, R., van Heeswijk, M., Yu, Q., Miche, Y., Lendasse, A.: Fast face recognition via sparse coding and extreme learning machine. Cognit. Comput. 6(2), 264–277 (2014)

    Google Scholar 

  32. Zhang, S., He, B., Nian, R., Wang, J., Han, B., Lendasse, A., Yuan, G.: Fast image recognition based on independent component analysis and extreme learning machine. Cognit. Comput. 6(3), 405–422 (2014)

    Article  Google Scholar 

  33. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(2), 513–529 (2012)

    Article  Google Scholar 

  34. Moreno, R., Corona, F., Lendasse, A., Graña, M., Galvão, L.S.: Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128, 207–216 (2014)

    Article  Google Scholar 

  35. Eirola, E., Gritsenko, A., Akusok, A., Björk, K.M., Miche, Y., Sovilj, D., Nian, R., He, B., Lendasse, A.: Extreme learning machines for multiclass classification: refining predictions with gaussian mixture models. In: International Work-Conference on Artificial Neural Networks, pp. 153–164. Springer, Cham (2015)

    Chapter  Google Scholar 

  36. Gritsenko, A., Eirola, E., Schupp, D., Ratner, E., Lendasse, A.: Solve classification tasks with probabilities. statistically-modeled outputs. In: The 12th International Conference on Hybrid Artificial Intelligence Systems. LNAI, pp. 293–305. Springer, Cham (2017)

    Google Scholar 

  37. Rao, C.R., Mitra, S.K.: Generalized Inverse of a Matrix and its Applications. Wiley (1971)

    Google Scholar 

  38. Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Graph. (Proc. SIGGRAPH) 34(4), 120:1–120:14 (2015)

    Article  Google Scholar 

  39. Akusok, A., Björk, K.M., Miche, Y., Lendasse, A.: High-performance extreme learning machines: a complete toolbox for big data applications. IEEE Access 3, 1011–1025 (2015)

    Article  Google Scholar 

  40. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1482–1489. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Gritsenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gritsenko, A., Sun, Z., Baek, S., Miche, Y., Hu, R., Lendasse, A. (2019). Deformable Surface Registration with Extreme Learning Machines. In: Cao, J., Vong, C., Miche, Y., Lendasse, A. (eds) Proceedings of ELM-2017. ELM 2017. Proceedings in Adaptation, Learning and Optimization, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-01520-6_28

Download citation

Publish with us

Policies and ethics