Skip to main content

Scanner Model Identification of Official Documents Using Noise Parameters Estimation in the Wavelet Domain

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11182)

Abstract

In this article, we propose a novel approach for discerning which scanner has been used to scan a particular document. Its originality relates to a signature extracted in the wavelet domain of the digitized documents where the acquisition noise specific to a scanner is located in the first subbands of details. This signature is an estimate of the statistical noise model which is modeled by a General Gaussian distribution (GGD) and whose parameters are estimated in the HH subband by maximizing the likelihood function. These parameters constitute a unique identifier for a scanner. For a given image, we propose to identify its origin by minimizing the Kullback-Leibler divergence between its signature and those of known scanners. Experiments conducted on a real scanned-image database, developed for the validation of the work presented in this paper, show that the proposed approach achieves high detection performance. Total of 1000 images were used in experiments.

Keywords

  • Digitized documents
  • Scanner identification
  • Image forensics
  • Authenticity
  • Wavelet transform

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-01449-0_50
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-01449-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. de Laubier, C.: La difficile quête du zéro papier. http://www.lemonde.fr/economie/article/2017/09/03/la-difficile-quete-du-zero-papier_5180409_3234.html

  2. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Principles and Practical Applications. Wiley, Hoboken (2011)

    Google Scholar 

  3. Qadir, M.A., Ahmad, I.: Digital text watermarking: secure content delivery and data hiding in digital documents. IEEE Aerosp. Electron. Syst. Mag. 21(11) (2006)

    CrossRef  Google Scholar 

  4. Swaminathan, A., Min, W., Ray Liu, K.J.: Digital image forensics via intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 3(1), 101–117 (2008)

    CrossRef  Google Scholar 

  5. Gloe, T., Franz, E., Winkler, A.: Forensics for flatbed scanners, in security, steganography, and watermarking of multimedia contents IX. Int. Soc. Opt. Photonics 6505, 65051I (2007)

    Google Scholar 

  6. Gou, H., Swaminathan, A., Min, W.: Robust scanner identification based on noise features. In: Security, Steganography, and Watermarking of Multimedia Contents IX. International Society for Optics and Photonics, vol. 6505, p. 65050S (2007)

    Google Scholar 

  7. Gou, H., Swaminathan, A., Min, W.: Intrinsic sensor noise features for forensic analysis on scanners and scanned images. IEEE Trans. Inf. Forensics Secur. 4(3), 476–491 (2009)

    CrossRef  Google Scholar 

  8. Khanna, N., Mikkilineni, A.K., Delp, E.J.: Scanner identification using feature-based processing and analysis. IEEE Trans. Inf. Forensics Secur. 4(1), 123–139 (2009)

    CrossRef  Google Scholar 

  9. Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Scanner identification using sensor pattern noise. In: Security, Steganography, and Watermarking of Multimedia Contents IX. International Society for Optics and Photonics, vol. 6505, p. 65051K (2007)

    Google Scholar 

  10. Khanna, N., Delp, E.J.: Source scanner identification for scanned documents. In: First IEEE International Workshop on Information Forensics and Security, WIFS 2009, pp. 166–170. IEEE (2009)

    Google Scholar 

  11. Joshi, S., Gupta, G., Khanna, N.: Source classification using document images from smartphones and flatbed scanners. In: Rameshan, R., Arora, C., Dutta Roy, S. (eds.) NCVPRIPG 2017. CCIS, vol. 841, pp. 281–292. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-0020-2_25

    CrossRef  Google Scholar 

  12. Dirik, A.E., Sencar, H.T., Memon, N.: Flatbed scanner identification based on dust and scratches over scanner platen. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 1385–1388. IEEE (2009)

    Google Scholar 

  13. Elsharkawy, Z.F., Abdelwahab, S.A., Dessouky, M.I., Elaraby, S.M., Abd El-Samie, F.E.: Identifying unique flatbed scanner characteristics for matching a scanned image to its source. Digit. Image Process. 5(9), 397–403 (2013)

    Google Scholar 

  14. Sugawara, S.: Identification of scanner models by comparison of scanned hologram images. Forensic Sci. Int. 241, 69–83 (2014)

    CrossRef  Google Scholar 

  15. Choi, C.-H., Lee, M.-J., Lee, H.-K.: Scanner identification using spectral noise in the frequency domain. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2121–2124. IEEE (2010)

    Google Scholar 

  16. Findlater, K.M., et al.: A CMOS image sensor with a double-junction active pixel. IEEE Trans. Electron Devices 50(1), 32–42 (2003)

    CrossRef  Google Scholar 

  17. Khanna, N., et al.: A survey of forensic characterization methods for physical devices. Digit. Investig. 3, 17–28 (2006)

    CrossRef  Google Scholar 

  18. Daubechies, I.: Ten Lectures on Wavelets, vol. 61. SIAM (1992)

    Google Scholar 

  19. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    CrossRef  MathSciNet  Google Scholar 

  20. Verbeke, J., Cools, R.: The newton-raphson method. Int. J. Math. Educ. Sci. Technol. 26(2), 177–193 (1995)

    CrossRef  Google Scholar 

  21. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    CrossRef  MathSciNet  Google Scholar 

  22. Cochran, M.: A proposed standard procedure to define minimum scanning attribute levels for hard copy documents. In: 2014 47th Hawaii International Conference on System Sciences (HICSS), pp. 2036–2043. IEEE (2014)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “PHC Utique” program of the French Ministry of Foreign Affairs and Ministry of higher education and research and the Tunisian Ministry of higher education and scientific research in the CMCU project number 17G1405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaima Ben Rabah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ben Rabah, C., Coatrieux, G., Abdelfattah, R. (2018). Scanner Model Identification of Official Documents Using Noise Parameters Estimation in the Wavelet Domain. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2018. Lecture Notes in Computer Science(), vol 11182. Springer, Cham. https://doi.org/10.1007/978-3-030-01449-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01449-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01448-3

  • Online ISBN: 978-3-030-01449-0

  • eBook Packages: Computer ScienceComputer Science (R0)