Advertisement

Fusing Omnidirectional Visual Data for Probability Matching Prediction

  • David Valiente
  • Luis Payá
  • Luis M. Jiménez
  • Jose M. Sebastián
  • Oscar Reinoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11182)

Abstract

This work presents an approach to visual data fusion with omnidirectional imaging in the field of mobile robotics. An inference framework is established through Gaussian processes (GPs) and Information gain metrics, in order to fuse visual data between poses of the robot. Such framework permits producing a probability distribution of feature matching existence in the 3D global reference system. Designed together with a filter-based prediction scheme, this strategy allows us to propose an improved probability-oriented feature matching, since the probability distribution is projected onto the image in order to predict relevant areas where matches are more likely to appear. This approach reveals to improve standard matching techniques, since it confers adaptability to the changing visual conditions by means of the Information gain and probability encodings. Consequently, the output data can feed a reliable visual localization application. Real experiments have been produced with a publicly-available dataset in order to confirm the validity and robustness of the contributions. Moreover, comparisons with a standard matching technique are also presented.

Keywords

Omnidirectional image Visual data fusion Feature matching Mobile robotics 

References

  1. 1.
    Abduljabbar, Z.A.: SEPIM: secure and efficient private image matching. App. Sci. 6(8), 213 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    ARVC: Automation, Robotics and Computer Vision Research Group: Omnidiectional Image Dataset. Miguel Hernandez University (2018). http://arvc.umh.es/db/images/innova_trajectory/
  3. 3.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006).  https://doi.org/10.1007/11744023_32CrossRefGoogle Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: Speeded up robust features. Comput. Vis. Image Underst. 110, 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Cain, C., Leonessa, A.: FastSLAM using compressed occupancy grids. J. Sens. 2016, 23 pages (2016)Google Scholar
  6. 6.
    Chen, L.C., Hoang, D.C., Lin, H.I., Nguyen, T.H.: Innovative methodology for multi-view point cloud registration in robotic 3d object scanning and reconstruction. App. Sci. 6(5), 132 (2016)CrossRefGoogle Scholar
  7. 7.
    Gerrits, M., Bekaert, P.: Local stereo matching with segmentation-based outlier rejection. In: The 3rd Canadian Conference on Computer and Robot Vision (CRV 2006), p. 66 (2006)Google Scholar
  8. 8.
    Guerrero, M., Abaunza, H., Castillo, P., Lozano, R., Garcia, C., Rodriguez, A.: Passivity-based control for a micro air vehicle using unit quaternions. App. Sci. 7(1), 13 (2017)CrossRefGoogle Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, Y., Lee, H., Park, C., Choi, S.: A study for optimum survey method of underwater structure using the dual sonar sensor. J. Sens. 2018, 10 pages (2018)Google Scholar
  11. 11.
    Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 486–492, June 2010Google Scholar
  12. 12.
    Kulback, S., Leiber, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lai, Y.C., Ting, W.O.: Design and implementation of an optimal energy control system for fixed-wing unmanned aerial vehicles. App. Sci. 6(11), 369 (2016)CrossRefGoogle Scholar
  14. 14.
    Li, J., Zhong, R., Hu, Q., Ai, M.: Feature-based laser scan matching and its application for indoor mapping. Sensors 16, 1265 (2016)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Li, S., Song, Q., Liu, H., Meng, M.H.: Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inform. 10(1), 331–339 (2014)CrossRefGoogle Scholar
  16. 16.
    Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293(5828), 133–135 (1985)CrossRefGoogle Scholar
  17. 17.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability an Statistics. Wiley, Hoboken (2004)zbMATHGoogle Scholar
  19. 19.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning series, Massachusetts Institute of Technology (2006)Google Scholar
  20. 20.
    Scaramuzza, D., Martinelli, A., Siegwart, R.: A toolbox for easily calibrating omnidirectional cameras. In: IEEE IROS, China, pp. 5695–5701 (2006)Google Scholar
  21. 21.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shuang, Y., et al.: Encoded light image active feature matching approach in binocular stereo vision. In: IFOST, pp. 406–409 (2016)Google Scholar
  23. 23.
    Valiente, D., Gil, A., Payá, L., Sebastián, J.M., Reinoso, O.: Robust visual localization with dynamic uncertainty management in omnidirectional SLAM. App. Sciences 7(12), 1294 (2017)CrossRefGoogle Scholar
  24. 24.
    Valiente, D., Reinoso, Ó., Gil, A., Payá, L., Ballesta, M.: Omnidirectional localization in vSLAM with uncertainty propagation and Bayesian regression. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2017. LNCS, vol. 10617, pp. 263–274. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70353-4_23CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David Valiente
    • 1
  • Luis Payá
    • 1
  • Luis M. Jiménez
    • 1
  • Jose M. Sebastián
    • 2
  • Oscar Reinoso
    • 1
  1. 1.Systems Engineering and Automation DepartmentMiguel Hernández UniversityElcheSpain
  2. 2.Centre for Automation and Robotics (CAR), UPM-CSICTechnical University of MadridMadridSpain

Personalised recommendations