Skip to main content

The Platform Effect: Analysing User Activity on Tumblr

  • Conference paper
  • First Online:
Internet Science (INSCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11193))

Included in the following conference series:

Abstract

One of the fundamental aspects of online social network platforms is that they provide a number of core affordances. The actual mechanisms of these affordances vary in different platforms but their main purposes are similar: allowing users to create content and connect with each other. In this paper, we study user activity on Tumblr, we analyse user activity around the most popular posts in one year, reflecting on the effects of Tumblr’s affordances, communication style, and content discovery mechanisms on its users’ behaviour. Our findings show that the majority of user activity on Tumblr is non-verbal, users reblog and like posts but they rarely engage in conversations with others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://unwrapping.tumblr.com/post/74972171775/user-mentions-tumblr-apps.

  2. 2.

    https://support.tumblr.com/post/132943845192/youve-asked-us-for-real-instant-messaging-and.

  3. 3.

    https://tumblr.zendesk.com/hc/en-us/articles/231855648-Replies.

References

  1. Adamic, L., Adar, E.: How to search a social network. Soc. Netw. 27(3), 187–203 (2005). https://doi.org/10.1016/j.socnet.2005.01.007

    Article  Google Scholar 

  2. Agarwal, S., Sureka, A.: A topical crawler for uncovering hidden communities of extremist micro-bloggers on Tumblr. In: CEUR Workshop Proceedings, vol. 1395, pp. 26–27 (2015)

    Google Scholar 

  3. Alrajebah, N., Carr, L., Luczak-Roesch, M., Tiropanis, T.: Deconstructing diffusion on Tumblr: structural and temporal aspects. In: Proceedings of the 2017 ACM on Web Science Conference, WebSci 2017, pp. 319–328. ACM (2017). https://doi.org/10.1145/3091478.3091491

  4. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 519–528. ACM, New York (2012). https://doi.org/10.1145/2187836.2187907

  5. Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V.: Characterizing user behavior in online social networks. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 49–62 (2009). https://doi.org/10.1145/1644893.1644900

  6. Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner, D.J.: A framework for web science. Found. Trends Web Sci. 1(1), 1–130 (2006). https://doi.org/10.1561/1800000001

    Article  MATH  Google Scholar 

  7. Bourlai, E., Herring, S.C.: Multimodal communication on Tumblr: “I have so many feels!”. In: Proceedings of the 2014 ACM Conference on Web Science, WebSci 2014, pp. 171–175. ACM (2014). https://doi.org/10.1145/2615569.2615697

  8. Boyd, D.M., Golder, S., Lotan, G.: Tweet, tweet, retweet: conversational aspects of retweeting on Twitter. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE Computer Society, January 2010. https://doi.org/10.1109/HICSS.2010.412

  9. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship. J. Comput.-Mediat. Commun. 13(1), 210–230 (2007). https://doi.org/10.1109/EMR.2010.5559139

    Article  Google Scholar 

  10. Chang, Y., Tang, L., Inagaki, Y., Liu, Y.: What is Tumblr: a statistical overview and comparison. ACM SIGKDD Explor. Newsl. 16(1), 21–29 (2014). https://doi.org/10.1145/2674026.2674030

    Article  Google Scholar 

  11. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 925–936. ACM (2014). https://doi.org/10.1145/2566486.2567997

  12. Cheng, J., Adamic, L.A., Kleinberg, J.M., Leskovec, J.: Do cascades recur? In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 671–681. International World Wide Web Conferences Steering Committee (2016). https://doi.org/10.1145/2872427.2882993

  13. DeSouza, M.E.: A case of the red pants Mondays: the connection between fandom, Tumblr, and consumption. Major Papers by Master of Science Students (2013)

    Google Scholar 

  14. Enge, E.: Twitter engagement unmasked: a study of more than 4M tweets (2014). https://www.stonetemple.com/twitter-engagement-umasked/

  15. Friggeri, A., Adamic, L., Eckles, D., Cheng, J.: Rumor cascades. In: International AAAI Conference on Web and Social Media Eighth International AAAI Conference on Weblogs and Social Media (ICWSM), pp. 101–110. AAAI (2014)

    Google Scholar 

  16. Goel, S., Anderson, A., Hofman, J., Watts, D.: The structural virality of online diffusion. 22, 26 (2013, preprint)

    Google Scholar 

  17. Hartson, R.: Cognitive, physical, sensory, and functional affordances in interaction design. Behav. Inf. Technol. 22(5), 315–338 (2003)

    Article  Google Scholar 

  18. Hillman, S., Procyk, J., Neustaedter, C.: alksjdf;lksfd: Tumblr and the fandom user experience. In: ACM Conference on Designing Interactive Systems, pp. 1–10 (2014). https://doi.org/10.1145/2598510.2600887

  19. Hillman, S., Procyk, J., Neustaedter, C.: Tumblr fandoms, community & #38; culture. In: Proceedings of the Companion Publication of the 17th ACM Conference on Computer Supported Cooperative Work & #38; Social Computing, CSCW Companion 2014, pp. 285–288. ACM (2014). https://doi.org/10.1145/2556420.2557634

  20. Honeycutt, C., Herring, S.C.: Beyond microblogging: conversation and collaboration via Twitter. In: 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp. 1–10. IEEE (2009). https://doi.org/10.1109/HICSS.2009.89

  21. Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM (2007). https://doi.org/10.1145/1348549.1348556

  22. Jin, L., Chen, Y., Wang, T., Hui, P., Vasilakos, A.V.: Understanding user behavior in online social networks: a survey. Commun. Mag. IEEE 51(9), 144–150 (2013). https://doi.org/10.1109/MCOM.2013.6588663

    Article  Google Scholar 

  23. Kendall, L., Hartzler, A., Klasnja, P., Pratt, W.: Descriptive analysis of physical activity conversations on Twitter. In: CHI 2011 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2011, pp. 1555–1560. ACM (2011). https://doi.org/10.1145/1979742.1979807

  24. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 591–600. ACM (2010). https://doi.org/10.1145/1772690.1772751

  25. Lin, Y.R., Margolin, D., Keegan, B., Baronchelli, A., Lazer, D.: # bigbirds never die: Understanding social dynamics of emergent hashtag. arXiv preprint arXiv:1303.7144 (2013)

  26. Liu, Y., Kliman-Silver, C., Mislove, A.: The tweets They are a-Changin: evolution of Twitter users and behavior. In: Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, pp. 305–314. AAAI (2014)

    Google Scholar 

  27. Marquart, E.: Microblog sensation: the growing popularity of Tumblr. 3PM J. Digit. Res. Publ. Sess. 2, 70–75 (2010)

    Google Scholar 

  28. Meier, F., Aigner, J., Elsweiler, D.: Using sessions from clickstream data analysis to uncover different types of Twitter behaviour. In: Proceedings of the 15th International Symposium of Information Science (ISI 2017), pp. 237–250 (2017)

    Google Scholar 

  29. Meier, F., Elsweiler, D., Wilson, M.L.: More than liking and bookmarking? Towards understanding Twitter favouriting behaviour. In: Proceeding of the 8th International AAAI Conference on Weblogs and Social Media, pp. 346–355. AAAI (2014)

    Google Scholar 

  30. Meixner, B., Marlow, J.: Like it or not: how do users understand the relationship between likes and edited social media content? In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA 2017, pp. 1893–1900 (2017)

    Google Scholar 

  31. Renwick, L.: Audience research project: Tumblr study group research How do Fandoms’ on Tumblr react to new media content? Enq.-ACES J. Undergrad. Res. 4, 1–24 (2014). https://doi.org/10.1145/3027063.3053119

    Article  Google Scholar 

  32. Schneider, F., Feldmann, A., Krishnamurthy, B., Willinger, W.: Understanding online social network usage from a network perspective. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, IMC 2009, pp. 35–48. ACM (2009). https://doi.org/10.1145/1644893.1644899

  33. Scissors, L., Burke, M., Wengrovitz, S.: What’s in a like?: attitudes and behaviors around receiving likes on Facebook. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing, CSCW 2016, pp. 1501–1510. ACM (2016). https://doi.org/10.1145/2818048.2820066

  34. Wen, X., Lin, Y.R., Trattner, C., Parra, D.: Twitter in academic conferences: usage, networking and participation over time. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 285–290. ACM (2014). https://doi.org/10.1145/2631775.2631826

  35. Xu, J., Compton, R., Lu, T.C., Allen, D.: Rolling through Tumblr: characterizing behavioral patterns of the microblogging platform. In: Proceedings of the 2014 ACM Conference on Web Science, WebSci 2014, pp. 13–22. ACM (2014). https://doi.org/10.1145/2615569.2615694

  36. Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in Twitter. In: Fourth International AAAI Conference on Weblogs and Social Media ICWSM, pp. 355–358 (2010)

    Google Scholar 

  37. Yang, Z., et al.: Understanding retweeting behaviors in social networks. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1633–1636. ACM (2010). https://doi.org/10.1145/1871437.1871691

  38. Zhou, L., Wang, W., Chen, K.: Tweet properly: analyzing deleted tweets to understand and identify regrettable ones. In: Proceedings of the 25th International Conference on World Wide Web (WWW 2016), pp. 603–612. ACM (2016). https://doi.org/10.1145/2872427.2883052

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Alrajebah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alrajebah, N., Carr, L., Tiropanis, T. (2018). The Platform Effect: Analysing User Activity on Tumblr. In: Bodrunova, S. (eds) Internet Science. INSCI 2018. Lecture Notes in Computer Science(), vol 11193. Springer, Cham. https://doi.org/10.1007/978-3-030-01437-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01437-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01436-0

  • Online ISBN: 978-3-030-01437-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics