Skip to main content

Iterative Solution of Saddle-Point Problems

  • Chapter
  • First Online:
Book cover Saddle-Point Problems and Their Iterative Solution

Part of the book series: Nečas Center Series ((NECES))

  • 832 Accesses

Abstract

Although sparse direct solvers are very competitive, they can be less efficient for challenging problems due to their storage and computational limitations. If we cannot solve the saddle-point problem directly, in many applications, we have to use some iterative method. Coupled iterative methods applied to the system (1.1) take some initial guess and generate approximate solutions for k = 1, … such that they satisfy . The convergence to the exact solution can be also measured using the residual vectors given as , where we eventually have .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)

    Article  MathSciNet  Google Scholar 

  2. M. Benzi, Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    Article  MathSciNet  Google Scholar 

  3. M. Benzi, V. Simoncini, On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)

    Article  MathSciNet  Google Scholar 

  4. M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  5. D. Braess, R. Sarazin, An efficient smoother for the Stokes problem. Appl. Numer. Math. 23, 3–20 (1997)

    Article  MathSciNet  Google Scholar 

  6. J.H. Bramble, J.E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50, 1–17 (1988)

    Article  MathSciNet  Google Scholar 

  7. D. Drzisga, L. John, U. Rüde, B. Wohlmuth, W. Zulehner, On the analysis of block smoothers for saddle point problems. SIAM J. Matrix Anal. Appl. 39(2), 932–960 (2018)

    Article  MathSciNet  Google Scholar 

  8. C. Durazzi, V. Ruggiero, Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra Appl. 10(8), 673–688 (2002)

    Article  MathSciNet  Google Scholar 

  9. H.C. Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations. Int. J. Numer. Meth. Fluids 22, 755–770 (1996)

    Article  Google Scholar 

  10. H.C. Elman, G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    Article  MathSciNet  Google Scholar 

  11. H.C. Elman, D.J. Silvester, A.J. Wathen, Iterative methods for problems in computational fluid dynamics, in Iterative Methods in Scientific Computing, ed. by R.H. Chan, C.T. Chan, G.H. Golub (Springer, Singapore, 1997), pp. 271–327

    MATH  Google Scholar 

  12. V. Faber, T.A. Manteuffel, S.V. Parter, On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations. Adv. Appl. Math. 11(2), 109–163 (1990)

    Article  MathSciNet  Google Scholar 

  13. R.W. Freund, N.M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)

    Article  MathSciNet  Google Scholar 

  14. R.W. Freund, N.M. Nachtigal, Software for simplified Lanczos and QMR algorithms. Appl. Numer. Math. 19, 319–341 (1995)

    Article  MathSciNet  Google Scholar 

  15. R. Freund, G.H. Golub, N.M. Nachtigal, Iterative solution of linear systems. Acta Numerica 1, 1–44 (1992)

    Article  MathSciNet  Google Scholar 

  16. T. Gergelits, Z. Strakoš, Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer. Algorithms 65(4), 759–782 (2014)

    Article  MathSciNet  Google Scholar 

  17. A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, Philadelphia, 1997)

    Book  Google Scholar 

  18. A. Greenbaum, V. Pták, Z. Strakoš, Any convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17, 465–470 (1996)

    Article  MathSciNet  Google Scholar 

  19. M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  20. J. Liesen, Z. Strakoš, Convergence of GMRES for tridiagonal toeplitz matrices. SIAM J. Matrix Anal. Appl. 26, 233–251 (2004)

    Article  MathSciNet  Google Scholar 

  21. J. Liesen, Z. Strakoš, GMRES convergence analysis for a convection-diffusion model problem. SIAM J. Sci. Comput. 26, 1989–2009 (2005)

    Article  MathSciNet  Google Scholar 

  22. J. Liesen, B. Parlett, On nonsymmetric saddle point matrices that allow conjugate gradient iterations. Numer. Math. 108, 605–624 (2008)

    Article  MathSciNet  Google Scholar 

  23. J. Liesen, Z. Strakoš, Krylov Subspace Methods, Principles and Analysis (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  24. J. Málek, Z. Strakoš, Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs. SIAM Spotlight Series (SIAM, Philadelphia, 2015)

    MATH  Google Scholar 

  25. J. Maryška, M. Rozložník, M. Tůma, The potential fluid flow problem and the convergence rate of the minimal residual method. Numer. Linear Algebra Appl. 3, 525–542 (1996)

    Article  MathSciNet  Google Scholar 

  26. C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)

    Article  MathSciNet  Google Scholar 

  27. J. Pestana, A.J. Wathen, Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)

    Article  MathSciNet  Google Scholar 

  28. M. Rozložník, V. Simoncini, Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)

    Article  MathSciNet  Google Scholar 

  29. Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Pub. Co., Boston, 1996) (2nd edition: SIAM, Philadelphia, 2003)

    Google Scholar 

  30. Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  31. J. Stoer, Solution of large linear systems of conjugate gradient type methods, in Mathematical Programming (Springer, Berlin, 1983), pp. 540–565

    Google Scholar 

  32. J. Stoer, R. Freund, On the solution of large indefinite systems of linear equations by conjugate gradients algorithm, in Computing Methods in Applied Sciences and Engineering V, ed. by R. Glowinski, J.L. Lions (INRIA, North Holland, 1982), pp. 35–53

    Google Scholar 

  33. M. Stoll, A. Wathen, Combination preconditioning and the Bramble-Pasciak+ preconditioner. SIAM J. Matrix Anal. Appl. 30(2), 582–608 (2008)

    Article  MathSciNet  Google Scholar 

  34. A.J. Wathen, Preconditioning. Acta Numerica 24, 329–376 (2015)

    Article  Google Scholar 

  35. A.J. Wathen, B. Fischer, D.J. Silvester, The convergence rate of the minimal residual method for the Stokes problem. Numer. Math. 71, 121–134 (1995)

    Article  MathSciNet  Google Scholar 

  36. A.J. Wathen, B. Fischer, D.J. Silvester, The convergence of iterative solution methods for symmetric and indefinite linear systems, in Numerical Analysis, ed. by D. Griffiths, D. Higham, A.G. Watson (Longman Scientific, Harlow, 1998), pp. 230–240

    Google Scholar 

  37. W. Zulehner, A class of smoothers for saddle point problems. Computing 65, 227–246 (2000)

    Article  MathSciNet  Google Scholar 

  38. W. Zulehner, Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–505 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rozložník, M. (2018). Iterative Solution of Saddle-Point Problems. In: Saddle-Point Problems and Their Iterative Solution. Nečas Center Series. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-01431-5_6

Download citation

Publish with us

Policies and ethics