Skip to main content

De-noise-GAN: De-noising Images to Improve RoboCup Soccer Ball Detection

  • 7160 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11141)


A moving robot or moving camera causes motion blur in the robot’s vision and distorts recorded images. We show that motion blur, differing lighting, and other distortions heavily affect the object localization performance of deep learning architectures for RoboCup Humanoid Soccer scenes. The paper proposes deep conditional generative models to apply visual noise filtering. Instead of generating new samples for a specific domain our model is constrained by reconstructing RoboCup soccer images. The conditional DCGAN (deep convolutional generative adversarial network) works semi-supervised. Thus there is no need for labeled training data. We show that object localization architectures significantly drop in accuracy when supplied with noisy input data and that our proposed model can significantly increase the accuracy again.


  • TensorFlow
  • Neural networks
  • GAN
  • De-noising
  • RoboCup
  • Robotics

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-01424-7_72
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-01424-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. Aitken, A., Ledig, C., Theis, L., Caballero, J., Wang, Z., Shi, W.: Checkerboard artifact free sub-pixel convolution: a note on sub-pixel convolution, resize convolution and convolution resize, July 2017.

  2. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. arXiv preprint arXiv:1702.00783 (2017)

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014).

  4. Karpathy, A., Leung, T.: Large-scale video classification with convolutional neural networks. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014).

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances In Neural Information Processing Systems, pp. 1–9 (2012)

    Google Scholar 

  6. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network, September 2016.

  7. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of CNN advances on the ImageNet, June 2016.

  8. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Drill 1(10), 1–14 (2016).

    CrossRef  Google Scholar 

  9. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, pp. 1–16 (2016)

  10. Szegedy, C., Reed, S., Sermanet, P., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions, pp. 1–12 (2014)

    Google Scholar 

  11. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957, pp. 1–13 (2017)

Download references


We are grateful to the NVIDIA corporation for supporting our research through the NVIDIA GPU Grant Program ( We used the donated NVIDIA Titan X (Pascal) to train our models. The work was made in collaboration with the TRR 169 “Crossmodal Learning”, funded by the DFG.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel Speck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Speck, D., Barros, P., Wermter, S. (2018). De-noise-GAN: De-noising Images to Improve RoboCup Soccer Ball Detection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)