Tass 2017 homepage. http://www.sepln.org/workshops/tass/. Accessed 20 May 2018
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) (2009)
Google Scholar
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)
MATH
Google Scholar
Hassan, A., Mahmood, A.: Deep learning approach for sentiment analysis of short texts. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 705–710. IEEE (2017)
Google Scholar
Hurtado Oliver, L., Pla, F., González Barba, J.: Elirf-upv en tass 2017: Análisis de sentimientos en twitter basado en aprendizaje profundo, p. 6, September 2017
Google Scholar
Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
CrossRef
Google Scholar
Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press, Cambridge (2015)
Google Scholar
Martınez-Cámara, E., Díaz-Galiano, M., García-Cumbreras, M., Garcıa-Vega, M., Villena-Román, J.: Overview of TASS 2017. In: Proceedings of TASS 2017: Workshop on Semantic Analysis at SEPLN (TASS 2017), vol. 1896 (2017)
Google Scholar
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Navas-Loro, M., Rodríguez-Doncel, V.: OEG at TASS 2017: Spanish sentiment analysis of tweets at document level
Google Scholar
Pang, B., et al.: Opinion mining and sentiment analysis. Foundations and Trends ®. Inf. Retrieval 2(1–2), 1–135 (2008)
CrossRef
Google Scholar
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Google Scholar
Rodrigues Barbosa, G.A., Silva, I.S., Zaki, M., Meira Jr., W., Prates, R.O., Veloso, A.: Characterizing the effectiveness of twitter hashtags to detect and track online population sentiment. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp. 2621–2626. ACM (2012)
Google Scholar
Rosá, A., Chiruzzo, L., Etcheverry, M., Castro, S.: Retuyt en tass 2017: Análisis de sentimientos de tweets en español utilizando svm y cnn. In: Proceedings of TASS (2017)
Google Scholar
Severyn, A., Moschitti, A.: Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 959–962. ACM (2015)
Google Scholar
Wang, H., Castanon, J.A.: Sentiment expression via emoticons on social media. arXiv preprint arXiv:1511.02556 (2015)
Wang, X., Liu, Y., Chengjie, S., Wang, B., Wang, X.: Predicting polarities of tweets by composing word embeddings with long short-term memory. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 1343–1353 (2015)
Google Scholar
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov., e1253 (2018)
Google Scholar