Skip to main content

Noise Masking Recurrent Neural Network for Respiratory Sound Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Abstract

In this paper, we propose a novel architecture called noise masking recurrent neural network (NMRNN) for lung sound classification. The model jointly learns to extract only important respiratory-like frames without redundant noise and then by exploiting this information is trained to classify lung sounds into four categories: normal, containing wheezes, crackles and both wheezes and crackles. We compare the performance of our model with machine learning based models. As a result, the NMRNN model reaches state-of-the-art performance on recently introduced publicly available respiratory sound database.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bahoura, M., Pelletier, C.: Respiratory sounds classification using cepstral analysis and Gaussian mixture models. In: 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEMBS 2004, vol. 1, pp. 9–12. IEEE (2004)

    Google Scholar 

  2. Mayorga, P., Druzgalski, C., Morelos, R.L., Gonzalez, O.H., Vidales, J.: Acoustics based assessment of respiratory diseases using GMM classification. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6312–6316. IEEE (2010)

    Google Scholar 

  3. Palaniappan, R., Sundaraj, K., Sundaraj, S.: A comparative study of the SVM and K-NN machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinform. 15(1), 223 (2014)

    Article  Google Scholar 

  4. Milicevic, M., Mazic, I., Bonkovic, M.: Classification accuracy comparison of asthmatic wheezing sounds recorded under ideal and real-world conditions. In: 15th International Conference on Artificial Intelligence, Knowledge Engineering and Databases (AIKED 2016), Venice (2016)

    Google Scholar 

  5. Rocha, B.M., Mendes, L., Chouvarda, I., Carvalho, P., Paiva, R.P.: Detection of cough and adventitious respiratory sounds in audio recordings by internal sound analysis. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 51–55. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_9

    Chapter  Google Scholar 

  6. Serbes, G., Ulukaya, S., Kahya, Y.P.: An automated lung sound preprocessing and classification system based onspectral analysis methods. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 45–49. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_8

    Chapter  Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  8. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)

    Google Scholar 

  9. Palaz, D., Magimai-Doss, M., Collobert, R.: Analysis of CNN-based speech recognition system using raw speech as input. Technical report, Idiap (2015)

    Google Scholar 

  10. Weigend, A.S.: Time Series Prediction: Forecasting the Future and Understanding the Past. Routledge, New York (2018)

    Book  Google Scholar 

  11. Rocha, B.M., et al.: A respiratory sound database for the development of automated classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 33–37. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_6

    Chapter  Google Scholar 

  12. Jakovljević, N., Lončar-Turukalo, T.: Hidden Markov model based respiratory sound classification. In: Maglaveras, N., Chouvarda, I., de Carvalho, P. (eds.) Precision Medicine Powered by pHealth and Connected Health. IP, vol. 66, pp. 39–43. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7419-6_7

    Chapter  Google Scholar 

  13. Berouti, M., Schwartz, R., Makhoul, J.: Enhancement of speech corrupted by acoustic noise. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1979, vol. 4, pp. 208–211. IEEE (1979)

    Google Scholar 

  14. Kochetov, K., Putin, E., Azizov, S., Skorobogatov, I., Filchenkov, A.: Wheeze detection using convolutional neural networks. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) EPIA 2017. LNCS (LNAI), vol. 10423, pp. 162–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65340-2_14

    Chapter  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  17. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Thirteenth Annual Conference of the International Speech Communication Association (2012)

    Google Scholar 

  18. Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on Acoustics, speech and signal processing (ICASSP), pp. 6645–6649. IEEE (2013)

    Google Scholar 

  19. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

  20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  21. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgements

This work was financially supported by the Government of the Russian Federation, Grant 08-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Kochetov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kochetov, K., Putin, E., Balashov, M., Filchenkov, A., Shalyto, A. (2018). Noise Masking Recurrent Neural Network for Respiratory Sound Classification. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics