Bertsekas, D.P.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)
MATH
Google Scholar
Brockman, G., et al.: OpenAI Gym. arXiv:1606.01540 (2016)
Chatzidimitriou, K.C., Mitkas, P.A.: A NEAT way for evolving echo state networks. In: Proceedings of European Conference on Artificial Intelligence (2010)
Google Scholar
Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. In: Proceedings of International Conference on Machine Learning (2016)
Google Scholar
Jäger, H.: The “echo state” approach to analysing and training recurrent neural networks. Technical report 148, GMD (2001)
Google Scholar
Jiang, F., Berry, H., Schoenauer, M.: Supervised and evolutionary learning of echo state networks. In: Proceedings of International Conference on Parallel Problem Solving from Nature (2008)
Google Scholar
Koprinkova-Hristova, P.: Three approaches to train echo state network actors of adaptive critic design. In: Proceeding of International Conference on Artificial Neural Networks (2016)
Google Scholar
Lin, L.J.: Reinforcement learning for robots using neural networks. Technical reports CMU-CS-93-103, Carnegie-Mellon University (1993)
Google Scholar
Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_36
CrossRef
Google Scholar
Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive approach to reinforcement learning. arXiv:1803.07055 (2018)
Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of International Conference on Machine Learning (2016)
Google Scholar
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)
CrossRef
Google Scholar
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
MathSciNet
CrossRef
Google Scholar
Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv:1703.03864 (2017)
Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by Evolino. Neural Comput. 19(3), 757–779 (2007)
CrossRef
Google Scholar
Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J.J., Stroobandt, D.: Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9), 1159–1171 (2008)
CrossRef
Google Scholar
Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354 (2017)
CrossRef
Google Scholar
Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control. 37(3), 332–341 (1992)
MathSciNet
CrossRef
Google Scholar
Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. arXiv:1712.06567 (2017)
Sutton, R.: Introduction to reinforcement learning with function approximation. In: Tutorial at the Conference on Neural Information Processing Systems (2015)
Google Scholar
Sutton, R.S., Barto, A.G., et al.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)
Google Scholar