Skip to main content

A Target Dominant Sets Clustering Algorithm

  • Conference paper
  • First Online:
  • 2705 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Abstract

The dominant sets clustering algorithm has some interesting properties and has achieved impressive results in experiments. However, with the data represented as feature vectors, we need to estimate data similarity and the regularization parameter influences the clustering results and number of clusters significantly. To obtain a specified number of clusters efficiently with the dominant sets algorithm, we present a target dominant set clustering algorithm. Our algorithm detects clusters in the first step, and then extracts dominant sets around the cluster centers based on a specially designed game dynamics. In addition, we show that this game dynamics can be utilized to reduce the computation and memory load significantly. Experiments show that our algorithm performs favorably to the original dominant sets algorithm in clustering quality with much smaller computation load than the latter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast evolutionary approach. Comput. Vis. Image Underst. 115(7), 984–995 (2011)

    Article  Google Scholar 

  3. Bulo, S.R., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumeration. Image Vis. Comput. 27(7), 911–922 (2009)

    Article  Google Scholar 

  4. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  Google Scholar 

  5. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  7. Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 1–17 (2007)

    Article  Google Scholar 

  8. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 1–30 (2007)

    Article  Google Scholar 

  9. Hamid, R., Maddi, S., Johnson, A.Y., Bobick, A.F., Essa, I.A., Isbell, C.: A novel sequence representation for unsupervised analysis of human activities. Artif. Intell. 173, 1221–1244 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hou, J., Xu, E., Chi, L., Xia, Q., Qi, N.: Dominant sets and target clique extraction. In: International Conference on Pattern Recognition, pp. 1831–1834 (2012)

    Google Scholar 

  11. Hou, J., Gao, H., Li, X.: DSets-DBSCAN: a parameter-free clustering algorithm. IEEE Trans. Image Process. 25(7), 3182–3193 (2016)

    Article  MathSciNet  Google Scholar 

  12. Hou, J., Gao, H., Li, X.: Feature combination via clustering. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 896–907 (2018)

    Article  Google Scholar 

  13. Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recogn. 46(11), 3129–3139 (2013)

    Article  Google Scholar 

  14. Hou, J., Xia, Q., Qi, N.: Experimental study on dominant sets clustering. IET Comput. Vis. 9(2), 208–215 (2015)

    Article  Google Scholar 

  15. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  16. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 167–172 (2000)

    Google Scholar 

  18. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

    Article  Google Scholar 

  19. Yang, X.W., Liu, H.R., Laecki, L.J.: Contour-based object detection as dominant set computation. Pattern Recogn. 45, 1927–1936 (2012)

    Article  Google Scholar 

  20. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20(1), 68–86 (1971)

    Article  Google Scholar 

  21. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1450–1457 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 61473045, and the Natural Science Foundation of Liaoning Province under Grant No. 20170540013 and No. 20170540005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, J., Lv, C., Zhang, A., E., X. (2018). A Target Dominant Sets Clustering Algorithm. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics