Skip to main content

High-Resolution Generative Adversarial Neural Networks Applied to Histological Images Generation

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11140)

Abstract

For many years, synthesizing photo-realistic images has been a highly relevant task due to its multiple applications from aesthetic or artistic [19] to medical purposes [1, 6, 21]. Related to the medical area, this application has had greater impact because most classification or diagnostic algorithms require a significant amount of highly specialized images for their training yet obtaining them is not easy at all. To solve this problem, many works analyze and interpret images of a specific topic in order to obtain a statistical correlation between the variables that define it. By this way, any set of variables close to the map generated in the previous analysis represents a similar image. Deep learning based methods have allowed the automatic extraction of feature maps which has helped in the design of more robust models photo-realistic image synthesis. This work focuses on obtaining the best feature maps for automatic generation of synthetic histological images. To do so, we propose a Generative Adversarial Networks (GANs) [8] to generate the new sample distribution using the feature maps obtained by an autoencoder [14, 20] as latent space instead of a completely random one. To corroborate our results, we present the generated images against the real ones and their respective results using different types of autoencoder to obtain the feature maps.

Keywords

  • Generative Adversarial Nets
  • Histological images
  • High-resolution generated images

The present work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of the National Council for Science, Technology and Technological Innovation (CONCYTEC-PERU), the Office of Research of Universidad Nacional de Ingeniería (VRI - UNI) and the research management office (OGI - UNI).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-01421-6_20
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-01421-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://www.kaggle.com/c/data-science-bowl-2018/data.

  2. 2.

    https://github.com/MorvanZhou/PyTorch-Tutorial.

  3. 3.

    https://github.com/aksharkkumar/nuclei-detection.

References

  1. Asperti, A., Mastronardo, C.: The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images. arXiv preprint arXiv:1712.03689 (2017)

  2. Bengio, Y.: Learning deep architectures for AI. Found. Trends\(\textregistered \) Mach. Learn. 2(1), 1–127 (2009)

    CrossRef  Google Scholar 

  3. Calimeri, F., Marzullo, A., Stamile, C., Terracina, G.: Biomedical data augmentation using generative adversarial neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10614, pp. 626–634. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68612-7_71

    CrossRef  Google Scholar 

  4. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  5. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  6. Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation (2018)

    Google Scholar 

  7. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  9. Hitawala, S.: Comparative study on generative adversarial networks. arXiv preprint arXiv:1801.04271 (2018)

  10. Hou, L., et al.: Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. arXiv preprint arXiv:1704.00406 (2017)

  11. Kastaniotis, D., Ntinou, I., Tsourounis, D., Economou, G., Fotopoulos, S.: Attention-aware generative adversarial networks (ATA-GANs). arXiv preprint arXiv:1802.09070 (2018)

  12. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018)

    CrossRef  Google Scholar 

  13. Kumar, A., Sattigeri, P., Fletcher, T.: Semi-supervised learning with GANs: manifold invariance with improved inference. In: Advances in Neural Information Processing Systems, pp. 5534–5544 (2017)

    Google Scholar 

  14. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate superresolution. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 5 (2017)

    Google Scholar 

  15. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  16. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

  17. Song, J., Zhao, S., Ermon, S.: A-NICE-MC: adversarial training for MCMC. In: Advances in Neural Information Processing Systems, pp. 5140–5150 (2017)

    Google Scholar 

  18. Tom, F., Sheet, D.: Simulating patho-realistic ultrasound images using deep generative networks with adversarial learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1174–1177. IEEE (2018)

    Google Scholar 

  19. Van Den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  20. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    Google Scholar 

  21. Zhang, H., Xie, X., Fang, C., Yang, Y., Jin, D., Fei, P.: High-throughput, high-resolution generated adversarial network microscopy. arXiv preprint arXiv:1801.07330 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antoni Mauricio or Jose Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mauricio, A., López, J., Huauya, R., Diaz, J. (2018). High-Resolution Generative Adversarial Neural Networks Applied to Histological Images Generation. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)