Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta Analysis with Ultrasound

  • Nicoló SavioliEmail author
  • Silvia VisentinEmail author
  • Erich CosmiEmail author
  • Enrico GrisanEmail author
  • Pablo LamataEmail author
  • Giovanni MontanaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11140)


The automatic analysis of ultrasound sequences can substantially improve the efficiency of clinical diagnosis. In this work we present our attempt to automate the challenging task of measuring the vascular diameter of the fetal abdominal aorta from ultrasound images. We propose a neural network architecture consisting of three blocks: a convolutional layer for the extraction of imaging features, a Convolution Gated Recurrent Unit (C-GRU) for enforcing the temporal coherence across video frames and exploiting the temporal redundancy of a signal, and a regularized loss function, called CyclicLoss, to impose our prior knowledge about the periodicity of the observed signal. We present experimental evidence suggesting that the proposed architecture can reach an accuracy substantially superior to previously proposed methods, providing an average reduction of the mean squared error from \(0.31\,\mathrm{mm}^2\) (state-of-art) to \(0.09\,\mathrm{mm}^2\), and a relative error reduction from \(8.1\%\) to \(5.3\%\). The mean execution speed of the proposed approach of 289 frames per second makes it suitable for real time clinical use.


Cardiac imaging Diameter Ultrasound Convolutional networks Fetal imaging GRU CyclicLoss 



This work was supported by the Wellcome/EPSRC Centre for Medical Engineering at Kings College London (WT 203148/Z/16/Z). Dr. Lamata holds a Wellcome Trust Senior Research Fellowship (grant n.209450/Z/17/Z).


  1. 1.
    Visentin, S., Grumolato, F., Nardelli, G.B., Di Camillo, B., Grisan, E., Cosmi, E.: Early origins of adult disease: low birth weight and vascular remodeling. Atherosclerosis 237(2), 391–399 (2014)CrossRefGoogle Scholar
  2. 2.
    Veronese, E., Tarroni, G., Visentin, S., Cosmi, E., Linguraru, M.G., Grisan, E.: Estimation of prenatal aorta intima-media thickness from ultrasound examination. Phys. Med. Biol. 59(21), 6355–6371 (2014)CrossRefGoogle Scholar
  3. 3.
    Tarroni, G., Visentin, S., Cosmi, E., Grisan, E.: Fully-automated identification and segmentation of aortic lumen from fetal ultrasound images. In: IEEE EMBC, pp. 153–156 (2015)Google Scholar
  4. 4.
    Molinari, F., Zeng, G., Suri, J.S.: A state of the art review on intimamedia thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comp. Meth. Prog. Biomed. 100(3), 201–221 (2010)CrossRefGoogle Scholar
  5. 5.
    Loizou, C.P.: A review of ultrasound common carotid artery image and video segmentation techniques. Med. Biol. Eng. Comp 52(12), 1073–1093 (2014)CrossRefGoogle Scholar
  6. 6.
    Cosmi, E., Visentin, S., Fanelli, T., Mautone, A.J., Zanardo, V.: Aortic intima media thickness in fetuses and children with intrauterine growth restriction. Obs. Gyn. 114, 1109–1114 (2009)CrossRefGoogle Scholar
  7. 7.
    Skilton, M.R., Evans, N., Griffiths, K.A., Harmer, J.A., Celermajer, D.S.: Aortic wall thickness in newborns with intrauterine growth restriction. Lancet 365, 1484–14846 (2005)CrossRefGoogle Scholar
  8. 8.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  9. 9.
    Shin, J.Y., Tajbakhsh, N., Hurst, R.T., Kendall, C.B., Liang, J.: Automating carotid intima-media thickness video interpretation with convolutional neural networks. In: IEEE CVPR Conference, pp. 2526–2535 (2016)Google Scholar
  10. 10.
    Chen, H., et al.: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 507–514. Springer, Cham (2015). Scholar
  11. 11.
    Huang, W., Bridge, C.P., Noble, J.A., Zisserman, A.: Temporal HeartNet: towards human-level automatic analysis of fetal cardiac screening video. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 341–349. Springer, Cham (2017). Scholar
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS 2012, pp. 1097–1105 (2012)Google Scholar
  13. 13.
    Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI 2017, pp. 4278–4284 (2017)Google Scholar
  14. 14.
    Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE CVPR Conference, pp. 2261–2269 (2017)Google Scholar
  15. 15.
    Siam, M., Valipour, A., Jägersand, M., Ray, N.: Convolutional gated recurrent networks for video segmentation. In: IEEE ICIP Conference, pp. 3090–3094 (2017)Google Scholar
  16. 16.
    Kingma, D.P., Ba, L.J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (2015)Google Scholar
  17. 17.
    Bonferroni, C.E.: Teoria statistica delle classi e calcolo delle probabilit. Pubblicazioni del Regio Istituto Superiore di Scienze Economiche e Commerciali di Firenze (1936)Google Scholar
  18. 18.
    Dunn, O.J.: Multiple comparisons among means. J. Am. Stat. Assoc. 56(293), 52–64 (1961)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringKings College LondonLondonUK
  2. 2.Department of Woman and Child HealthUniversity Hospital of PadovaPaduaItaly
  3. 3.Department of Information EngineeringUniversity of PadovaPaduaItaly
  4. 4.WMG, University of WarwickCoventryUK

Personalised recommendations