Skip to main content

Generation of Reference Trajectories for Safe Trajectory Planning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

Many variants of a sampling-based motion planning algorithm, namely Rapidly-exploring Random Tree, use biased-sampling for faster convergence. One of such recently proposed variant, the Hybrid-Augmented CL-RRT+, uses a predicted predefined template trajectory with a machine learning algorithm as a reference for the biased sampling. Because of the finite number of template trajectories, the convergence time is short only in scenarios where the final trajectory is close to predicted template trajectory. Therefore, a generative model using variational autoencoder for generating many reference trajectories and a 3D-ConvNet regressor for predicting those reference trajectories for critical vehicle traffic-scenarios is proposed in this work. Using this framework, two different safe trajectory planning algorithms, namely GATE and GATE-ARRT+, are presented in this paper. Finally, the simulation results demonstrate the effectiveness of these algorithms for the trajectory planning task in different types of critical vehicle traffic-scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohanan M., Salgoankar A.: A survey of robotic motion planning in dynamic environments Robotics and Autonomous Systems (2017). https://doi.org/10.1016/j.robot.2017.10.011

    Article  Google Scholar 

  2. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation (2000)

    Google Scholar 

  3. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access 2, 56–77 (2014)

    Article  Google Scholar 

  4. Otte, M., Frazzoli, E.: RRT-X: real-time motion planning/replanning for environments with unpredictable obstacles. In: International Workshop on the Algorithmic Foundations of Robotics (2014)

    Google Scholar 

  5. Kuwata, Y., et al.: Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Tech. 17, 1105–1118 (2009)

    Article  Google Scholar 

  6. Chaulwar, A., et al.: Planning of safe trajectories in dynamic multi-object traffic-scenarios. J. Traffic Logist. Eng. (2016)

    Google Scholar 

  7. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In: IEEE International Conference on Intelligent Robots and Systems, vol. 2 (2003)

    Google Scholar 

  8. Kiesel, S., Burns, E., Ruml, W.: Abstraction-guided sampling for motion planning. In: SoCS (2012)

    Google Scholar 

  9. Karaman, S., et al.: Anytime motion planning using the RRT*. In: IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  10. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high dimensions. In: IROS (2011)

    Google Scholar 

  11. Kim, D., Lee, J., Yoon, S.: Cloud RRT*. In: IEEE International Conference on Robotics and Automation (2014)

    Google Scholar 

  12. Gammell, J., Srinivasa, S., Barfoot, T.: Batch Informed Trees (BIT*): sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In: IEEE International Conference on Robotics and Automation (2015)

    Google Scholar 

  13. Huh, J., Lee, D.: Learning high-dimensional mixture models for fast collision detection in rapidly-exploring random trees. In: IEEE International Conference on Robotics and Automation (2016)

    Google Scholar 

  14. Chaulwar, A., Botsch, M., Utschick, W.: A hybrid machine learning approach for planning safe trajectories in complex traffic-scenarios. In: International Conference on Machine Learning and Applications (2016)

    Google Scholar 

  15. Ichter, B., Harrison, J., Pavone, M.: Learning sampling distributions for robot motion planning. In: International Conference on Robotics and Automation (2018)

    Google Scholar 

  16. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  17. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and tree search. arXiv:1705.08439 (2017)

  18. Chaulwar, A., Botsch, M., Utschick W.: A machine learning based biased-sampling approach for planning safe trajectories in complex traffic-scenarios. In: IEEE Intelligent Vehicles Symposium (2017)

    Google Scholar 

  19. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE TPAMI 35, 221–231 (2013)

    Article  Google Scholar 

  20. Jazar, R.: Vehicle Dynamics Theory and Application. Vehicle Planar Dynamics, 2nd edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-0-387-74244-1. Chapter 10

    Book  Google Scholar 

  21. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  22. Shah, R., Romijnders, R.: Applying deep learning to basketball trajectories. arXiv preprint arXiv:1608.03793 (2016)

  23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  24. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Botsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaulwar, A., Botsch, M., Utschick, W. (2018). Generation of Reference Trajectories for Safe Trajectory Planning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics