Skip to main content

A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

In real world scenarios, objects are often partially occluded. This requires a robustness for object recognition against these perturbations. Convolutional networks have shown good performances in classification tasks. The learned convolutional filters seem similar to receptive fields of simple cells found in the primary visual cortex. Alternatively, spiking neural networks are more biological plausible. We developed a two layer spiking network, trained on natural scenes with a biologically plausible learning rule. It is compared to two deep convolutional neural networks using a classification task of stepwise pixel erasement on MNIST. In comparison to these networks the spiking approach achieves good accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Article  Google Scholar 

  2. Jones, J.P., Palmer, L.A.: The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 85, 187–211 (1987)

    Google Scholar 

  3. Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynaer, M., Cowey, A.: Quantitative distribution of GABA-immunopositive and - immunonegative neurons and synapses in the monkey striate cortex (Area 17). Cereb. Cortex 2, 295–309 (1992)

    Article  Google Scholar 

  4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  5. LeCun, Y., Bottou, L., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  6. Priebe, N.J., Ferster, D.: Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex. Neuron 4, 482–497 (2008)

    Article  Google Scholar 

  7. Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352 (2010)

    Article  Google Scholar 

  8. Katzner, S., Busse, L., Carandini, M.: GABAA inhibition controls response gain in visual cortex. J. Neurosci. 31, 5931–5941 (2011)

    Article  Google Scholar 

  9. Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., Gerstner, W.: Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011)

    Article  Google Scholar 

  10. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. arXiv:1202.2745 (2012)

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  12. Zeiler, M.D.: ADADELTA: an adaptive learning rate method arXiv:1212.5701v1 (2012)

  13. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806 (2014)

    Article  Google Scholar 

  14. Bengio, Y., Lee, D.H., Bornschein, J., Lin, Z.: Towards biologically plausible deep learning. arXiv:1703.08245 (2015)

  15. Chollet, F., et al.: Keras (2015). https://keras.io. Accessed 23 Apr 2018

  16. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  17. Kermani Kolankeh, A., Teichmann, M., Hamker, F.H.: Competition improves robustness against loss of information. Front. Comput. Neurosci. 9, 35 (2015)

    Article  Google Scholar 

  18. Russakovsky, O., Denk, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  20. Vitay, J., Dinkelbach, H.Ü., Hamker, F.H.: ANNarchy: a code generation approach to neural simulations on parallel hardware. Front. Neuroinformatics 9, 19 (2015). https://doi.org/10.3389/fninf.2015.00019

    Article  Google Scholar 

  21. Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A.: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016)

    Article  Google Scholar 

  22. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. arXiv:1611.01421 (2017)

  23. Tavanaei, A., Maida, A.S.: Multi-layer unsupervised learning in a spiking convolutional neural network. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2023–2030 (2017)

    Google Scholar 

  24. Wen, H., Shi, J., Zhang, Y., Lu, K., Cao, J., Liu, Z.: Neural encoding and decoding with deep learning for dynamic natural vision. Cereb. Cortex, 1–25 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the European Social Fund (ESF) and the Freistaat Sachsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Larisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larisch, R., Teichmann, M., Hamker, F.H. (2018). A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics