Bäcklund Transformations in Discrete Variational Principles for Lie-Poisson Equations

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 267)


We consider a dynamical system on the dual of a Lie algebra. On the dual of that algebra there is another linear Poisson structure. This system is integrable for one of the Poisson structures because it admits a suitable Lax representation. The discrete variational principle is applied to the problem given by the non-usual linear Poisson structure to obtain Lie-Poisson integrators which preserve all the Casimir functions of the system. In the 19th century Bäcklund transformations were introduced in the area of partial differential equations as transformations that map solutions to solutions. It is known that Bäcklund transformations satisfy some specific properties such as commutativity. We geometrically define Bäcklund transformations associated with the obtained Lie-Poisson integrators under some invariance assumptions. The existence of an invariant scalar product that identifies the Lie algebra and the dual of the Lie algebra allows to establish the connection with the results proved in Suris’ book on the Lie algebra. We will make clear the constructions by looking at the Toda Lattice example.


Variational integrators Lie-Poisson equations Bäcklund transformations 

MSC 2010

37K10 65P10 70G45 70H06 



This work has been supported by a grant (010-ABEL-CM-2014A) from Iceland, Liechtenstein and Norway through the EEA Financial Mechanism, operated by Universidad Complutense de Madrid, by the ICMAT Severo Ochoa project SEV-2011-0087, MTM2013-42870-P and MTM2016-76072-P. MBL developed this research mainly at Universidad Carlos III de Madrid as Assistant Professor.


  1. 1.
    Adler, M.: On a trace functional for formal pseudodifferential operators and symplectic structure of the korteweg-de vries type equations. Invent. Math. 50 (1979)Google Scholar
  2. 2.
    Austin, M., Krishnaprasad, P.S., Wang, L.-S.: Almost poisson integration of rigid body systems. J. Comput. Phys. 107, 105–117 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bäcklund, A.V.: Einiges über curven und flächen transformations. Lunds Univ. Arsskr. 10, 1–12 (1874)Google Scholar
  4. 4.
    Blaszak, M., Marciniak, K.: R-matrix approach to lattice integrable systems. J. Math. Phys. 35(9) (1994)Google Scholar
  5. 5.
    Bobenko, A.I., Suris, Y.B.: Discrete time lagrangian mechanics on lie groups, with an application to the lagrange top. Comm. Math. Phys. 204, 147–188 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Channell, P.J., Scovel, J.C.: Integrators for lie-poisson dynamical systems. Phys. D 50, 80–85 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Darboux, G.: Sur une proposition relative aux équations linéaires. Compt. Rend. Acad. Sci., Ser. I Math., 94, 1456–1459 (1882)Google Scholar
  8. 8.
    Deift, P.: Integrable hamiltonian systems, in dynamical systems and probabilistic methods in partial differential equations. Amer. Math. Soc. Lectures in Applied Mathematics, 31, 103–138 (1996)Google Scholar
  9. 9.
    Ge, Z., Marsden, J.E.: Lie-poisson hamilton-jacobi theory and lie-poisson integrators. Phys. Lett. A 133(3), 134–139 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Libermann, P., Marle, C.-M.: Symplectic Geometry and Analytical Mechanics. Mathematics and its Applications. Springer, Netherlands (1987)zbMATHGoogle Scholar
  11. 11.
    Lie, S.: Theorie der Transformationsgruppen. (Zweiter Abschnitt, unter mitwirkung von Friedrich Engel), Teubner, Leipzig (1890)Google Scholar
  12. 12.
    Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156 (1978)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Marsden, J.E., Pekarsky, S., Shkoller, S.: Discrete euler-poincaré and lie-poisson equations. Nonlinearity 12, 1647–1662 (1999)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry. In: Texts in Applied Mathematics, vol. 17. Springer-Verlag (1994)Google Scholar
  15. 15.
    Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Morosi, C.: The R-matrix theory and the reduction of poisson manifolds. J. Math. Phys. 33, 941 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Morosi, C., Pizzocchero, L.: R-matrix theory formal Casimirs and the periodic Toda lattice. J. Math. Phys. 37, 4484 (1996)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moser, J.: Finitely many mass points on the line under the influence of an exponential potential-an integrable system. Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seatlle, Wash., 1974). Lecture Notes in Physis, vol. 38, pp. 467–497. Springer, Berlin (1975)Google Scholar
  19. 19.
    Moser, J., Veselov, A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 243–271 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Oevel, W.: R structures Yang-Baxter equations, and related involution theorems. J. Math. Phys. 30, 1140 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Okubo, S., Das, A.: The integrability condition for dynamical systems. Phys. Lett. B 209, 311 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ratiu, T.S.: Coadjoint orbits and the beginnings of a geometric representation theory, in developments and trends in infinite-dimensional lie theory. Progr. Math., 288, 417–457, Birkhäuser Boston, Inc., Boston, MA (2011)Google Scholar
  23. 23.
    Sasaki, R.: Canonical structure of bäcklund transformations. Phys. Lett. A 78, 7–10 (1980)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schouten, J.A.: Über differentialkomitanten zweier kontravarianter Grössen. Nederl. Akad. Wetensch. Proc. Ser. A. 43, 449–452 (1940)zbMATHGoogle Scholar
  25. 25.
    Semenov-Tyan-Shanskii, M.A.: What is a classical R-matrix? Funct. Anal. Appl. 17(4), 259–272 (1983)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Suris, Y.B.: The problem of integrable discretization: Hamiltonian approach. In: Progress in mathematics, vol. 219, Birkhäuser, Basel (2003)Google Scholar
  27. 27.
    Symes, W.W.: The QR algorithm and scattering for the finite nonperiodic Toda lattice. Phys. D. 4(2), 275–280 (1981/82)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vaisman, I.: Lectures on the Geometry of Poisson Manifolds, Birkhäuser (2012)Google Scholar
  29. 29.
    Weinstein, A.: The local structure of poisson manifolds. J. Differ. Geom. 18, 523–557 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zullo, F.: Bäcklund transformations and exact time-discretizations for Gaudin and related models. PhD Thesis, Universitá degli Studi Roma Tre (2010)Google Scholar
  31. 31.
    Zullo, F.: Bäcklund transformations and hamiltonian flows. J. Phys. A Math. Theor. 46(14) (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad Politécnica de MadridMadridSpain
  2. 2.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain
  3. 3.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)MadridSpain

Personalised recommendations