Efficient, Collaborative Screw Assembly in a Shared Workspace

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 867)


We provide online dynamic robot task selection in human-robot collaborative contexts through a voxel-based collision avoidance system. This paper describes a partially automated screw assembly work-cell with a worker and a 6-DOF light-weight robot arm. The shared workspace is monitored by 3D point-cloud sensors. The dynamic task selection reduces robot waiting due to obstacles by exploiting situations where multiple tasks are available for the robot. Massively parallel evaluation of voxelized robot trajectories allows online avoidance of blocked paths. The robustness of the screw assembly process is increased through Cartesian compliance based on force-torque sensor feedback.


Collaborative robots Human-robot-interaction Robots for Industry 4.0 Robot vision 



This research was funded in part by the Baden-Württemberg Stiftung in the project KolRob – Kollaborativer, intelligenter Roboterkollege für den Facharbeiter des Mittelstands.


  1. 1.
    Albu-Schäffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G.: The DLR lightweight robot: design and control concepts for robots in human environments. Ind. Robot Int. J. 34(5), 376–385 (2007)CrossRefGoogle Scholar
  2. 2.
    Harada, K., Yoshida, E., Yokoi, K.: Motion Planning for Humanoid Robots. Springer Science & Business Media, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Hermann, A., Drews, F., Bauer, J., Klemm, S., Roennau, A., Dillmann, R.: Unified GPU voxel collision detection for mobile manipulation planning. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)Google Scholar
  4. 4.
    Hermann, A., Mauch, F., Fischnaller, K., Klemm, S., Roennau, A., Dillmann, R.: Anticipate your surroundings: predictive collision detection between dynamic obstacles and planned robot trajectories on the GPU. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–8 (2015)Google Scholar
  5. 5.
    ISO. ISO/TS 15066:2016-02 (e) Robots and robotic devices - Collaborative robots (2016)Google Scholar
  6. 6.
    Mainprice, J., Berenson, D.: Human-robot collaborative manipulation planning using early prediction of human motion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 299–306 (2013)Google Scholar
  7. 7.
    Mauch, F., Roennau, A., Heppner, G., Buettner, T., Dillmann, R.: Service robots in the field: The BratWurst Bot. In: 2017 18th International Conference on Advanced Robotics, ICAR 2017, pp. 13–19 (2017)Google Scholar
  8. 8.
    Michalos, G., Makris, S., Tsarouchi, P., Guasch, T., Kontovrakis, D., Chryssolouris, G.: Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37, 248–253 (2015)CrossRefGoogle Scholar
  9. 9.
    Park, C., Pan, J., Manocha, D.: Real-time optimization-based planning in dynamic environments using GPUs. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4090–4097. IEEE (2013)Google Scholar
  10. 10.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA, vol. 3, p. 5 (2009)Google Scholar
  11. 11.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library. In: IEEE International Conference on Robotics and Automation, pp. 1 – 4 (2011)Google Scholar
  12. 12.
    Scherzinger, S., Roennau, A.: Forward dynamics compliance control (FDCC): a new approach to cartesian compliance for robotic manipulators. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4568–4575 (2017)Google Scholar
  13. 13.
    TÜV Nord CERT GmbH. TÜV Safety Certificate UR 3 UR5 UR10 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.FZI Forschungszentrum InformatikKarlsruheGermany

Personalised recommendations