Advertisement

Current-Mode Instrumentation Amplifiers Based on Various Current-Mode Building Blocks

  • Leila Safari
  • Giuseppe Ferri
  • Shahram Minaei
  • Vincenzo Stornelli
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter current-mode instrumentation amplifiers (CMIAs) implemented with different current-mode building blocks are discussed. Various structures are classified into four categories based on their input and output signals, i.e. current input current output (I-I) or pure CMIA, current input voltage output (I-V) or trans-impedance CMIA, voltage input current output (V-I) or trans-admittance CMIA and voltage input and voltage output (V-V) CMIA. Each section starts with a brief introduction on the used active building block and continues with the detailed description of the CMIA topology.

References

  1. 1.
    Gupta K., Gupta P., Pandey N., Pandey R. (2016) CDBA – current based instrumentation amplifier. Journal of Communications Technology, Electronics and Computer Science, 4:11–15.CrossRefGoogle Scholar
  2. 2.
    Acar C., Ozuguz S. (1999) A new versatile building block: current differencing buffered amplifier suitable for analog processing filters. Microelectronics Journal, 30:157–160.CrossRefGoogle Scholar
  3. 3.
    Yuce E. (2010) Various current-mode and voltage-mode instrumentation amplifier topologies suitable for integration. Journal of Circuits, Systems, and Computers 19(3):89–699.CrossRefGoogle Scholar
  4. 4.
    Pandey N., Nand D., Pandey R. (2016) Generalized operational floating current conveyor based instrumentation amplifier.IET Circuits Devices Systems, 10:209–219.CrossRefGoogle Scholar
  5. 5.
    Pandey N., Nand D., Kumar V. V., Ahalawat V. K., Malhotra C. (2016) Realization of OFCC based Transimpedance mode instrumentation amplifier.Theoretical and Applied Electrical Engineering, 14(2):162–167.Google Scholar
  6. 6.
    Pandey R., Pandey N., Paul K. (2013) Electronically tunable transimpedance instrumentation amplifier based on OTRA. Journal of Engineering, 10:1–5, 2013.Google Scholar
  7. 7.
    Nand D., Pandey N. (2017) A new proposal for OFCC-based instrumentation amplifier. International Journal of Electrical and Computer Engineering (IJECE), 7(1):134–143.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ghallab Y. H., Badawy W, Kaler K. V. I. S., Maundy B. J. (2005) A novel current-mode instrumentation amplifier based on operational floating current conveyor. IEEE Transactions on Instrumentation and Measurement, 54(5):1941–1949.CrossRefGoogle Scholar
  9. 9.
    Cini U. (2014) A low-offset high CMRR current-mode instrumentation amplifier using differential difference current conveyor.IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014.Google Scholar
  10. 10.
    Cini U., Arslan E. (2015) A high gain and low-offset current-mode instrumentation amplifier using differential difference current conveyors. IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2015.Google Scholar
  11. 11.
    Yuce E. (2014) Novel instrumentation amplifier and integrator circuits using single DDCC and only grounded passive elements. Indian journal of Pure & Applied Physics, 52:767–757.Google Scholar
  12. 12.
    Hassan T., Mahmoud S. A. (2010) New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. International Journal of Electronics and Communications (AEÜ), 64:47–55.CrossRefGoogle Scholar
  13. 13.
    Yang T. Y., Liu K. Y., Wang H. Y. (2011) Novel high-CMRR DVCC-based instrumentation amplifier. International Conference on Engineering and Industries (ICEI), 2011.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leila Safari
    • 1
  • Giuseppe Ferri
    • 2
  • Shahram Minaei
    • 3
  • Vincenzo Stornelli
    • 2
  1. 1.TehranIran
  2. 2.University of L’AquilaL’aquilaItaly
  3. 3.Doğuş UniversityIstanbulTurkey

Personalised recommendations