Advertisement

Current-Mode Wheatstone Bridge

  • Leila Safari
  • Giuseppe Ferri
  • Shahram Minaei
  • Vincenzo Stornelli
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

Current chapter deals with Wheatstone Bridges with the focus on Current-Mode Wheatstone Bridge and its associated signal conditioning circuits. The operation, advantages and drawbacks of each circuit are discussed in detail. To make the comparison between traditional Voltage-Mode Wheatstone Bridge and Current-Mode Wheatstone Bridge more convenient, at the beginning of this chapter, the concept of Voltage-Mode Wheatstone Bridge is briefly summarized. The theory of Mixed-Mode Wheatstone Bridge and read-out circuits are also included.

References

  1. 1.
    Ekelof S. (2001) The genesis of the Wheatstone Bridge. Engineering Science and Education Journal, 10(1):37–40.CrossRefGoogle Scholar
  2. 2.
    Gregory B. A. (1981) An Introduction to Electrical Instrumentation and Measurement Systems, 2nd edition, MacMillan.Google Scholar
  3. 3.
    Kester W., Bryant J., Jung W., Wurcer S., Kitchen C., (1991) Practical design techniques for sensor signal conditioning, Analog Device Inc., ch4.Google Scholar
  4. 4.
    Lotichius J., Wagner S., Kupnik M., Werthschutzky R. (2015) Measurement uncertainty of time-based and voltage-based Wheatstone Bridge readout circuits. IEEE Sensors, 1–4.Google Scholar
  5. 5.
    Fraden J. (2003) Hand book of modern sensors, Physics, Design and Applications. 3rd Edition, New York.Google Scholar
  6. 6.
    Ong G. T., Chan P. K. (2014) A power-aware chopper-stabilized instrumentation amplifier for resistive Wheatstone Bridge sensors. IEEE Transactions on Instrumentation and Measurement, 63(9):2253–2263.CrossRefGoogle Scholar
  7. 7.
    Ghosh S., Mukherjee A., Sahoo K., Sen S. K., Sarkar A. (2015) A novel sensitivity enhancement technique employing Wheatstone's Bridge for strain and temperature measurement. Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT), 2015.Google Scholar
  8. 8.
    Boujamaa E. M., Soulie Y., Mailly F., Latorre L., Nouet P. (2008) Rejection of power supply noise in wheatstone bridges: Application to piezoresistive MEMS. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, 2008.Google Scholar
  9. 9.
    Mantenuto P., Ferri G., Marcellis A. De (2014) Uncalibrated automatic bridge-based CMOS integrated interfaces for wide-range resistive sensors portable applications. Microelectronics Journal, 45:589–596.CrossRefGoogle Scholar
  10. 10.
    Marcellis A. De, Ferri G., Mantenuto P. (2013) Analog Wheatstone Bridge-based automatie interface for grounded and floating wide range resistive sensors. Sensors and Actuators B: Chemical, 187:371–378.CrossRefGoogle Scholar
  11. 11.
    Mantenuto P., Marcellis A. De and Ferri G. (2012) Uncalibrated analog bridge based interface for wide-range resistive sensor estimation. IEEE Sensors Journal, 12(5):1413–1414.CrossRefGoogle Scholar
  12. 12.
    Lopez-Martin A. J., Zuza M., Carlosena A. (2002) A CMOS interface for resistive bridge transducers. IEEE International Symposium on Circuits and Systems (ISCAS), 2002.Google Scholar
  13. 13.
    Fauzi N. I. M., Anuar N. F., Hana Herman S., Abdullah W. F. H. (2015) Integrated readout circuit using active bridge for resistive-based sensing. Proceedings Computer Science, 2015.Google Scholar
  14. 14.
    Morgenshtein A., Sudakov-Boreysha L., Dinnar U., Jakobson C. G., Nemirovsky Y. (2004) Wheatstone-bridge readout interface for ISFET/REFET applications. Sensors and Actuators, 18–27.CrossRefGoogle Scholar
  15. 15.
    Boujamaa E. M. et al. (2001) A low power interface circuit for resistive sensors with digital offset compensation. IEEE International Symposium on Circuits and Systems, 2001.Google Scholar
  16. 16.
    Stefanescu D. (2011) Strain gauges and wheatstone bridges-basic instrumentation and new applications for electrical measurement of non-electrical quantities. Proc. 8th Int. Multi-Conf. SSD, 2011.Google Scholar
  17. 17.
    Lopez-Martin A. J., Osa J. I., Zuza M., Carlosena A. (2003) Analysis of a negative impedance converter as a temperature compensator for bridge sensors. IEEE Transactions on Instrumentation and Measurement, 52(4):1068–1072.CrossRefGoogle Scholar
  18. 18.
    Kopsytynski P., Obermeier E. (1989) An interchangeable silicon pressure sensor with on-chip compensation circuitry. Sensors and Actuators, 18(3):239–245.CrossRefGoogle Scholar
  19. 19.
    Johnson C. D., Chen C. (1990) Bridge-to-computer data acquisition system with feedback nulling. IEEE Transactions on Instrumentation and Measurement, 39(3):531–534.CrossRefGoogle Scholar
  20. 20.
    Graaf G. De, Wolffenbuttel R.F. (2006) Systematic approach for the linearization and readout of non-symmetric impedance bridges. IEEE Transactions on Instrumentation and Measurement, 55(5):1566–1572.CrossRefGoogle Scholar
  21. 21.
    Madhu N. M., Geetha T., Sankaran P., Jagadeesh V. K. (2017) Linearization of the output of a wheatstone bridge for single active sensor. IEEE Sensors Journal, 17:1696–1705.Google Scholar
  22. 22.
    Maxim Corporation – Application Note AN3450, Positive Analog Feedback compensates Pt100 Transducer, available online at http://pdfserv.maxim-ic.com/en/an/AN3450.pdf (last accessed June 28, 2008).
  23. 23.
    Bacharowski W. (2008) A precision interface for a Resistance Temperature Detector (RTD). National Semiconductor Corporation, 2008 – available online at http://www.national.com/nationaledge/dec04/article.html (last accessed June 28, 2008).
  24. 24.
    Azhari S. J., Kaabi H. (2000) AZKA cell, the current-mode alternative of wheatstone bridge. IEEE Transactions on Circuits and Systems I, 47(9):1277–1284.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ghallab Y. H., Badawy W. (2006) A New topology for a current-mode wheatstone bridge. IEEE Transactions on Circuits and Systems II, Express Briefs, 53(1):18–22.CrossRefGoogle Scholar
  26. 26.
    Khan A. A., Al-Turaigi M. A., El-Ela M. A. (1994) Operational floating current conveyor: Characteristics, Modeling and Applications. IEEE Instrumentation and Measurement Technology Conference, 2:788–791, 1994.Google Scholar
  27. 27.
    Director S. W., Rohrere R. A. (1969)The generalized adjoint network and network sensitivities. IEEE Transactions on Circuits Theory, CT-16:318–323.CrossRefGoogle Scholar
  28. 28.
    Roberts G. W., Sedra A. S. (1989) All current-mode frequency selective circuits. Electronics Letters, 25(12):759–761.CrossRefGoogle Scholar
  29. 29.
    Mucha I. (1995) Current operational amplifiers: basic architecture, properties, exploitation and future. Analog Integrated Circuits and Signal Processing, 7(3):243–255.CrossRefGoogle Scholar
  30. 30.
    Safari L., Minaei S. (2017) A novel COA-based electronically adjustable current-mode instrumentation amplifier topology. International Journal of Electronics and Communications 82:285–293.CrossRefGoogle Scholar
  31. 31.
    Farshidi E. (2008) Simple realization of CMOS current-mode wheatstone bridge. IEEE Signals Circuits and Systems International Conference, 2008.Google Scholar
  32. 32.
    Tanaphatsiri C., Jaikla W., Siripruchyanun M. (2008) A current-mode wheatstone bridge employing only single DO-CDTA.IEEE Asia Pacific Conference on Circuits and Systems, 2008.Google Scholar
  33. 33.
    Jaikla W., Siripruchyanun M. (2006) New low temperature-sensitive and electronically controllable configurations for the measurement of small resistance changes. Proceedings of the international technical conference on circuits/systems, computers and communications, 2006.Google Scholar
  34. 34.
    Barthélemy H., Kussener E., Meillère S. (2010) CMOS instrumentation-amplifier based on ASKA cell. Proceedings of the 8th IEEE International NEWCAS Conference, 2010.Google Scholar
  35. 35.
    Safari L., Barile G., Ferri G., Stornelli V. (2018) New resistor free current mode wheatstone bridge topologies with intrinsic linearity. IEEE Prime Conference, 2018.Google Scholar
  36. 36.
    Gift S., Maundy B. (2006) New configurations for the measurement of small resistance changes. IEEE Transaction on Circuits and Systems II, 53(3):178–182.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leila Safari
    • 1
  • Giuseppe Ferri
    • 2
  • Shahram Minaei
    • 3
  • Vincenzo Stornelli
    • 2
  1. 1.TehranIran
  2. 2.University of L’AquilaL’aquilaItaly
  3. 3.Doğuş UniversityIstanbulTurkey

Personalised recommendations