Advertisement

CMIA Based on Op-Amp Power Supply Current Sensing Technique

  • Leila Safari
  • Giuseppe Ferri
  • Shahram Minaei
  • Vincenzo Stornelli
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In vast majority of operational amplifiers, output transistor current is not independently accessible. Op-Amp power supply current sensing is a simple technique for detecting output transistor current from the Op-Amp power supply leads. This technique was first introduced in 1979 to implement voltage controlled current sources and current controlled current sources [1]. It has been implemented by connecting current mirrors to Op-Amp supply leads and makes possible to gain access to output transistor current separately.

References

  1. 1.
    Haslett J. W., Rao M K N (1979) A high quality controlled current source. IEEE Transactions Instrumentation Measurement, 28(2):132–140.CrossRefGoogle Scholar
  2. 2.
    Nordholt E. H.(1982) Extending Opamp capabilities by using power-supply. IEEE Transactions on Circuits and Systems, 29(6):411–414.CrossRefGoogle Scholar
  3. 3.
    Toumazou C., Lidgey F. J. (1985) Floating-impedance convertors using current conveyors. Electronic Letters, 21(15):64–642.CrossRefGoogle Scholar
  4. 4.
    Toumazou C., Lidgey F. G. (1986) Universal active filter using current conveyors. Electronics Letters, 22(12): 662–664.CrossRefGoogle Scholar
  5. 5.
    Toumazou C., Lidgey F. G. (1987) Wide-band precision rectification. IEE Proceedings 134(1), DOI:  https://doi.org/10.1049/ip-g-1.1987.0002.CrossRefGoogle Scholar
  6. 6.
    Wilson B., Lidgey F. G., Toumazou C. (1988) Current activated analogue signal processing circuits. Proc. IEEE International symposium on circuits and systems, June 1988.Google Scholar
  7. 7.
    Wilson B. (1985), Floating FDNR employing a new CCII-conveyor implementation. Electronic Letters, 21:996–997.CrossRefGoogle Scholar
  8. 8.
    Sharif-Bakhtiar M., Aronhime P. (1978) A current conveyor realization using operational amplifiers, International Journal of Electronics, 45: 283–288.CrossRefGoogle Scholar
  9. 9.
    Annema A. J., Nauta B., Langevelde R.V., Tuinhout H. (2005) Analog circuits in ultra-deep-submicron CMOS. IEEE Journal of Solid State Circuits, 40:132–143.CrossRefGoogle Scholar
  10. 10.
    Fayomi C. J. B., Sawan M., Roberts G.W. (2004) Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial. Analog Integrated Circuits and Signal Processing, 39:21–38.CrossRefGoogle Scholar
  11. 11.
    Su W. J., Lidgey F. J., Porta S., Zhu Q. S. (1994) Analysis of IC op-amp power-supply current sensing. IEEE International Symposium on Circuits and Systems, 1994.Google Scholar
  12. 12.
    Lidgey F. J., Su W. J.(1994) Improvements to op-amp power-supply current sensing technique. Electronic Letters, 30(19):1567–1568.CrossRefGoogle Scholar
  13. 13.
    Toumazou C., Lidgey F. J. (1989) Novel current-mode instrumentation amplifier. Electronic Letters, 25(3):228–230.CrossRefGoogle Scholar
  14. 14.
    Douglas E. L. et al. (2004) A Low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology. Proceedings of Canadian Conference on Electrical and Computer Engineering, 2004.Google Scholar
  15. 15.
    Harb A., Sawan M. (1999) New low-power low-voltage high-CMRR CMOS instrumentation amplifier.Proceedings of IEEE International Symposium on Circuits and Systems, 1999.Google Scholar
  16. 16.
    Prior C. A., Vieira F. C. B., Rodrigues C. R. (2006), Instrumentation amplifier using robust rail-to-rail operational amplifiers with gm control. Proceedings of IEEE Int. Midwest Symposium on Circuits and Systems, 2006.Google Scholar
  17. 17.
    Li J. T., Pun S. H., Mak P. U., Vai M. I. (2008) Analysis of op-amp power-supply current sensing current-mode instrumentation amplifier for biosignal acquisition system. 30th Annual International IEEE EMBS Conference, 2008.Google Scholar
  18. 18.
    Zhu Q. S., Lidgey F. J., Hunt M. A. V.(1992) Improved wide-band, high CMRR instrumentation amplifier. Clin. Phys. Physiol. Phys. Meas., 13(Suppl. A):51–55.CrossRefGoogle Scholar
  19. 19.
    Zhu Q. S., Lidgey E J., Su W. J.(1993) High CMRR, second generation current-mode instrumentation amplifiers. Proceedings of IEEE Int. Symposium on Circuits and Systems, 1993.Google Scholar
  20. 20.
    Azhari S. J., Fazlalipoor H. (2009) CMRR in voltage-op-amp-based current-mode instrumentation amplifiers (CMIA). IEEE Transaction on Instrumentation and Measurement, 58(3):563–569.CrossRefGoogle Scholar
  21. 21.
    Su W. J., Lidgey F. J. (1995) Common-mode rejection ratio in current-mode instrumentation amplifiers.Analog Integrated Circuits Signal Processing, 7(3):257–260.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leila Safari
    • 1
  • Giuseppe Ferri
    • 2
  • Shahram Minaei
    • 3
  • Vincenzo Stornelli
    • 2
  1. 1.TehranIran
  2. 2.University of L’AquilaL’aquilaItaly
  3. 3.Doğuş UniversityIstanbulTurkey

Personalised recommendations